Skip to main content

Implementing Clustering and Classification Approaches for Big Data with MATLAB

  • Conference paper
  • First Online:
Proceedings of the Future Technologies Conference (FTC) 2018 (FTC 2018)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 880))

Included in the following conference series:

  • 1662 Accesses

Abstract

Data sets grow rapidly, driven by increasing storage capacities as well as by the wish to equip more and more devices with sensors and connectivity. In mechanical engineering Big Data offers new possibilities to gain knowledge from existing data for product design, manufacturing, maintenance and failure prevention. Typical interests when analyzing Big Data are the identification of clusters, the assignment to classes or the development of regression models for prediction. This paper assesses various Big Data approaches and chooses adequate clustering and classification solutions for a data set of simulated jet engine signals and life spans. These solutions include k-means clustering, linear discriminant analysis and neural networks. MATLAB is chosen as the programming environment for implementation because of its dissemination in engineering disciplines. The suitability of MATLAB as a tool for Big Data analysis is to be evaluated. The results of all applied clustering and classification approaches are discussed and prospects for further adaption and transferability to other scenarios are pointed out.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kitchin, R.: The Data Revolution. SAGE, Los Angeles (2014)

    Google Scholar 

  2. Franks, B.: Taming the Big Data Tidal Wave. Wiley, Hoboken (2012)

    Book  Google Scholar 

  3. Laney, D.: 3D Data Management: Controlling Data Volume, Velocity, and Variety, https://blogs.gartner.com/doug-laney/files/2012/01/ad949-3D-Data-Management-Controlling-Data-Volume-Velocity-and-Variety.pdf. Accessed 01 June 2018

  4. Demchenko, Y., Grosso, P., Laat, C., de Membrey, P.: Addressing Big Data issues in scientific data infrastructure. In: IEEE (ed.) 2013 International Conference on Collaboration Technologies and Systems (CTS) (2013)

    Google Scholar 

  5. Long, C., Talbot, K., Gill, K. (eds.): Data Science & Big Data Analytics. Wiley, Indianapolis (2015)

    Google Scholar 

  6. Simon, P.: Too Big to Ignore. Wiley, Hoboken (2013)

    Google Scholar 

  7. Iafrate, F.: From Big Data to Smart Data. Wiley, Hoboken (2015)

    Book  Google Scholar 

  8. Aggarwal, C.C.: Data Mining. Springer, Cham (2015)

    MATH  Google Scholar 

  9. Discroll, T.A.: Learning MATLAB. Society for Industrial and Applied Mathematics, Philadelphia (2009)

    Google Scholar 

  10. NASA Prognostics Center of Excellence: PCoE Datasets. https://ti.arc.nasa.gov/tech/dash/pcoe/prognostic-data-repository/. Accessed 06 Sept 2017

  11. Saxena, A., Goebel, K.: Turbofan Engine Degradation Simulation Data Set. https://ti.arc.nasa.gov/tech/dash/groups/pcoe/prognostic-data-repository. Accessed 14 June 2018

  12. Kitchin, R.: Big Data, new epistemologies and paradigm shifts. SAGE J. Big Data Soc. (2014)

    Google Scholar 

  13. Louridas, P., Ebert, C.: Machine learning. IEEE Softw. 33(5), 110–115 (2016)

    Article  Google Scholar 

  14. Xu, R., Wunsch, D.: Survey of clustering algorithms. IEEE Trans. Neural Netw. 16(3), 645–678 (2005)

    Article  Google Scholar 

  15. Ester, M., Sander, J.: Knowledge Discovery in Databases. Springer, Berlin (2000)

    Book  Google Scholar 

  16. Shindler, M.: Approximation Algorithms for the Metric k-Median Problem. UCLA, Los Angeles (2008)

    Google Scholar 

  17. Arthur, D., Vassilvitskii, S.: k-means++: the advantages of careful seeding. In: SIAM (ed.) SODA 2007: Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 1027–1035, Philadelphia (2007)

    Google Scholar 

  18. Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning, 2nd edn. Springer, New York (2017)

    MATH  Google Scholar 

  19. Suthaharan, S.: Machine Learning Models and Algorithms for Big Data Classification. Springer, New York (2016)

    Book  Google Scholar 

  20. Genuer, R., Poggi, J.-M., Tuleau-Malot, C., Villa-Vialaneix, N.: Random forests for Big Data. In: Big Data Research, pp. 22–46 (2017)

    Article  Google Scholar 

  21. Schlittgen, R.: Multivariate Statistik. Oldenbourg, München (2009)

    Book  Google Scholar 

  22. The MathWorks Inc.: Create and Visualize Discriminant Analysis Classifier. https://de.mathworks.com/help/stats/create-and-visualize-discriminant-analysis-classifier.html. Accessed 2018 Sep 2017

  23. Nielsen, M.: Using Neural Nets to Recognize Handwritten Digits. http://neuralnetworksanddeeplearning.com/chap1.html. Accessed 27 Mar 2018

  24. The MathWorks Inc.: Tansig: Hyperbolic Tangent Sigmoid Transfer Function. https://de.mathworks.com/help/nnet/ref/tansig.html. Accessed 28 Mar 2018

  25. Russell, S., Norvig, P.: Künstliche Intelligenz, 3., aktualisierte. Pearson, München (2012)

    Google Scholar 

  26. Kolen, J.F., Kremer, S.C. (eds.): A Field Guide to Dynamical Recurrent Networks. IEEE, New York (2001)

    Google Scholar 

  27. Alpaydin, E.: Introduction to Maschine Learning. MIT Press, Cambridge (2004)

    Google Scholar 

  28. The MathWorks Inc.: Tainml: Levenberg–Marquardt Backpropagation. https://de.mathworks.com/help/nnet/ref/trainlm.html. Accessed 27 Mar 2018

  29. Marquardt, D.W.: An algorithm for least-squares estimation of nonlinear parameters. J. Soc. Ind. Appl. Math. 11(2), 431–441 (1963)

    Article  MathSciNet  Google Scholar 

  30. Hagan, M.T., Menhaj, M.: Training feed-forward networks with the Marquardt algorithm. IEEE Trans. Neural Netw. 5(6), 989–993 (1994)

    Article  Google Scholar 

  31. TIOBE: TIOBE Index for March 2018. https://www.tiobe.com/tiobe-index/. Accessed 21 Mar 2018

  32. GitHut: Top Active Languages. http://githut.info/. Accessed 21 Mar 2018

  33. Ramasso, E., Saxena, A.: Performance benchmarking and analysis of prognostic methods for CMAPSS datasets. Int. J. Prognstics Health Manag. 5(2), 1–5 (2014)

    Google Scholar 

  34. The MathWorks Inc.: Big Data Workflow Using Tall Arrays and Datastores. https://de.mathworks.com/help/distcomp/big-data-workflow-using-tall-arrays-and-datastores.html. Accessed 27 Mar 2018

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katrin Pitz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pitz, K., Anderl, R. (2019). Implementing Clustering and Classification Approaches for Big Data with MATLAB. In: Arai, K., Bhatia, R., Kapoor, S. (eds) Proceedings of the Future Technologies Conference (FTC) 2018. FTC 2018. Advances in Intelligent Systems and Computing, vol 880. Springer, Cham. https://doi.org/10.1007/978-3-030-02686-8_35

Download citation

Publish with us

Policies and ethics