Skip to main content

Microbial Symbionts of Antarctic Marine Benthic Invertebrates

  • Chapter
  • First Online:
The Ecological Role of Micro-organisms in the Antarctic Environment

Abstract

The microbial colonization of living surfaces may be affected by several environmental and biological factors and may play an important role in the development and evolution of the holobiont. Antarctica, as an extreme and isolated environment, offers a unique opportunity to study the peculiar and often strict interactions that are established between a benthic host and its symbionts. Despite this, to date the association between microbes and Antarctic benthic invertebrates has been only seldom investigated, resulting in fragmented and poor information. This chapter will be devoted to showcase our current knowledge on prokaryotic (Bacteria and Archaea) and eukaryotic (yeasts and diatoms) microbial symbionts of Antarctic benthic invertebrate hosts, including mainly Porifera and, at to a lesser extent, Cnidaria, Echinodermata and Annelida.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abele, D., Vazquez, S., Buma, A. G. J., Hernandez, E., Quiroga, C., Held, C., Frickenhaus, S., Harms, L., Lopez, J. L., Helmke, E., & Mac Cormack, W. P. (2017). Pelagic and benthic communities of the Antarctic ecosystem of Potter Cove: Genomics and ecological implications. Marine Genomics, 33, 1–11.

    CAS  Google Scholar 

  • Ahn, I. Y., Moon, H. W., Jeon, M., & Kang, S.-H. (2016). First record of massive blooming of benthic diatoms and their association with megabenthic filter feeders on the shallow seafloor of an Antarctic fjord: Does glacier melting fuel the bloom? Ocean Science Journal, 51, 273–279.

    Article  CAS  Google Scholar 

  • Amsler, C. D., Moeller, C. B., McClintock, J. B., Iken, K. B., & Baker, B. J. (2000). Chemical defenses against diatom fouling in Antarctic marine sponges. Biofouling, 16, 29–45.

    Article  CAS  Google Scholar 

  • Barnes, D. K. A., & Conlan, K. E. (2007). Disturbance, colonization and development of Antarctic benthic communities. Philosophical Transactions of the Royal Society B, 362, 11–38.

    Article  Google Scholar 

  • Bavestrello, G., Cerrano, C., Cattaneo-Vietti, R., Gaino, E., Penna, A., & Sarà, M. (2000). Parasitic diatoms inside Antarctic sponges. The Biological Bulletin, 198, 29–33.

    Article  CAS  Google Scholar 

  • Buzzini, P., Branda, E., Goretti, M., & Turchetti, B. (2012). Psychrophilic yeasts from worldwide glacial habitats: Diversity, adaptation strategies and biotechnological potential. FEMS Microbiology Ecology, 82, 217–241.

    Article  CAS  Google Scholar 

  • Calizza, E., Careddu, G., Sporta Caputi, S., Rossi, L., & Costantini, M. L. (2018). Time- and depth-wise trophic niche shifts in Antarctic benthos. PLoS One, 13(3), e0194796.

    Article  Google Scholar 

  • Casas, C., Ramil, F., & van Ofwegen, L. P. (1997). Octocorallia (Cnidaria: Anthozoa) from the Scotia Arc, South Atlantic Ocean. I. The genus Alcyonium Linnaeus, 1758. Zoologische Mededelingen (Leiden), 71, 299–311.

    Google Scholar 

  • Cerrano, C., Bavestrello, G., Calcinai, B., Cattaneo-Vietti, R., & Sarà, A. (2000a). Asteroids eating sponges from Tethys Bay, East Antarctica. Antarctic Science, 12, 425–426.

    Article  Google Scholar 

  • Cerrano, C., Arillo, A., Bavestrello, G., Calcinai, A., Cattaneo-Vietti, R., Cancinai, B., Cattaneo-Vietti, R., Penna, A., Sarà, M., & Totti, C. (2000b). Diatom invasion in the Antarctic hexactinellid sponge Scolymastra joubini. Polar Biology, 23, 441–444.

    Article  Google Scholar 

  • Cerrano, C., Calcinai, B., Cucchiari, E., Di Camillo, C., Nigro, M., Regoli, F., Sarà, A., Schiaparelli, S., Totti, C., & Bavestrello, G. (2004a). Are diatoms a food source for Antarctic sponges? Chemistry and Ecology, 20, 57–64.

    Article  Google Scholar 

  • Cerrano, C., Calcinai, B., Cucchiari, E., Di Camillo, C., Totti, C., & Bavestrello, G. (2004b). The diversity of relationships between Antarctic sponges and diatoms: The case of Mycale acerata Kirkpatrick, 1907 (Porifera, Demospongiae). Polar Biology, 27, 231–237.

    Article  Google Scholar 

  • Clark, G. F., Raymond, B., Riddle, M. J., Stark, J. S., & Johnston, E. L. (2015). Vulnerability of Antarctic shallow invertebrate-dominated ecosystems. Austral Ecology, 40, 482–491.

    Article  Google Scholar 

  • Clark, G. F., Stark, J. S., Palmer, A. S., Riddle, M. J., & Johnston, E. L. (2017). The roles of sea-ice, light and sedimentation in structuring shallow Antarctic benthic communities. PLoS One, 12, e0168391.

    Article  Google Scholar 

  • Clarke, A., & Crame, J. A. (1989). The origin of the Southern Ocean marine fauna. In J. A. Crame (Ed.), Origins and evolution of the Antarctic biota (Vol. 47, pp. 253–268). London: Special Publications of Geological Society.

    Google Scholar 

  • Clarke, A., & Johnston, N. M. (2003). Antarctic marine benthic diversity. Oceanography and Marine Biology Annual Review, 41, 47–114.

    Google Scholar 

  • Clarke, A., Aronson, R., Crame, J., Gili, J., & Blake, D. (2004). Evolution and diversity of the benthic fauna of the Southern Ocean continental shelf. Antarctic Science, 16, 559–568.

    Article  Google Scholar 

  • Dayton, P. K., Robilliard, G. A., & Devries, A. L. (1969). Anchor ice formation in McMurdo Sound, Antarctica, and its biological effects. Science, 163, 273–274.

    Article  CAS  Google Scholar 

  • Díaz, A., Gérard, K., González-Wevar, C., Maturana, C., Féral, J.-P., David, B., et al. (2018). Genetic structure and demographic inference of the regular sea urchin Sterechinus neumayeri (Meissner, 1900) in the Southern Ocean: The role of the last glaciation. PLoS One, 13, e0197611.

    Article  Google Scholar 

  • Duarte, A. W., Dayo-Owoyemi, I., Nobre, F. S., Pagnocca, F. C., Chaud, L. C., Pessoa, A., Felipe, M. G., & Sette, L. D. (2013). Taxonomic assessment and enzymes production by yeasts isolated from marine and terrestrial Antarctic samples. Extremophiles, 17, 1023–1035.

    Article  CAS  Google Scholar 

  • Gaino, E., Bavestrello, G., Cattaneo-Vietti, R., & SaraÁ, M. (1994). Scanning electron microscope evidence for diatom uptake by two Antarctic sponges. Polar Biology, 14, 55–58.

    Article  Google Scholar 

  • Gili, J. M., Alvà, V., Pagès, F., Klöser, H., & Arntz, W. E. (1996). Benthic diatoms as the major food source in the sub-Antarctic marine hydroid Silicularia rosea. Polar Biology, 16, 507–512.

    Article  Google Scholar 

  • Gili, J.-M., Arntz, W. E., Palanques, A., et al. (2006). A unique assemblage of epibenthic sessile suspension feeders with archaic features in the high-Antarctic. Deep Sea Research Part II, 53, 1029–1052.

    Article  Google Scholar 

  • González-Aravena, M., Urtubia, R., Del Campo, K., Lavín, P., Wong, C. M. V. L., Cárdenas, C. A., & González-Rocha, G. (2016). Antibiotic and metal resistance of cultivable bacteria in the Antarctic sea urchin. Antarctic Science, 28, 261–268.

    Article  Google Scholar 

  • Hamilton, P. B., Poulin, M., & Yang, J.-R. (1997). A new diatom genus Porannulus (Bacillariophyta), associated with marine sponges around King George Island, South Shetland Islands, Antarctica. Diatomologica Research, 12, 229–242.

    Article  Google Scholar 

  • Hentschel, U., Hopke, J., Horn, M., Friedrich, A. B., Wagner, M., Hacker, J., & Moore, B. S. (2002). Molecular evidence for a uniform microbial community in sponges from different oceans. Applied and Environmental Microbiology, 68, 4431–4440.

    Article  CAS  Google Scholar 

  • Herrera, L. M., García-Laviña, C. X., Marizcurrena, J. J., Volonterio, O., Ponce de León, R., & Castro-Sowinski, S. (2017). Hydrolytic enzyme-producing microbes in the Antarctic oligochaete Grania sp. (Annelida). Polar Biology, 40, 947–953.

    Article  Google Scholar 

  • Kellogg, D. E., Kellogg, T. B., Dearborn, J. H., Edwards, K. C., & Fratt, D. B. (1982). Diatoms from brittle star stomach contents: Implications for sediment reworking. Antarctic Journal of the United States, 17, 167–169.

    Google Scholar 

  • Laich, F., Chávez, R., & Vaca, I. (2014). Leucosporidium escuderoi f.a., sp. nov., a basidiomycetous yeast associated with an Antarctic marine sponge. Antonie Van Leeuwenhoek, 105, 593–601.

    Article  CAS  Google Scholar 

  • Mangano, S., Michaud, L., Caruso, C., Brilli, M., Bruni, V., Fani, R., & Lo Giudice, A. (2009). Antagonistic interactions among psychrotrophic cultivable bacteria isolated from Antarctic sponges: A preliminary analysis. Research in Microbiology, 160, 27–37.

    Article  CAS  Google Scholar 

  • Mangano, S., Michaud, L., Caruso, C., & Lo Giudice, A. (2014). Metal and antibiotic-resistance in psychrotrophic bacteria associated with the Antarctic sponge Hemigellius pilosus (Kirkpatrick, 1907). Polar Biology, 37, 227–235.

    Article  Google Scholar 

  • Mangano, S., Caruso, C., Michaud, L., & Lo Giudice, A. (2018). First evidence of quorum sensing activity in bacteria associated with Antarctic sponges. Polar Biology, 41, 1435–1445.

    Article  Google Scholar 

  • Margesin, R., & Miteva, V. (2011). Diversity and ecology of psychrophilic microorganisms. Research in Microbiology, 162, 346–361.

    Article  Google Scholar 

  • McClintock, J. B., Amsler, C. D., Baker, B. J., & van Soest, R. W. (2005). Ecology of Antarctic marine sponges: An overview. Integrative and Comparative Biology, 45, 359–368.

    Article  Google Scholar 

  • Núñez-Pons, L., Carbone, M., Vázquez, J., Gavagnin, M., & Avila, C. (2013). Lipophilic defenses from Alcyonium soft corals of Antarctica. Journal of Chemical Ecology, 39, 675–685.

    Article  Google Scholar 

  • Papaleo, M. C., Fondi, M., Maida, I., Perrin, E., Lo Giudice, A., Michaud, L., Mangano, S., Bartolucci, G., Romoli, R., & Fani, R. (2012). Sponge-associated microbial Antarctic communities exhibiting antimicrobial activity against Burkholderia cepacia complex bacteria. Biotechnology Advances, 30, 272–293.

    Article  CAS  Google Scholar 

  • Rodríguez-Marconi, S., De la Iglesia, R., Díez, B., Fonseca, C. A., Hajdu, E., & Trefault, N. (2015). Characterization of bacterial, archaeal and eukaryote symbionts from Antarctic sponges reveals a high diversity at a three-domain level and a particular signature for this ecosystem. PLoS One, 10, e0138837.

    Article  Google Scholar 

  • Rosenber, E., & Zilber-Rosenberg, I. (2016). Microbes drive evolution of animals and plants: The hologenome concept. mBio, 7, e01395–e01315. https://doi.org/10.1128/mBio.01395-15.

    Article  Google Scholar 

  • Rosenber, E., & Zilber-Rosenberg, I. (2018). The hologenome concept of evolution after 10 years. Microbiome, 6, 78. https://doi.org/10.1186/s40168-018-0457-9.

    Article  Google Scholar 

  • Schiaparelli, S. (2014). Biotic interactions. In C. De Broyer, P. Koubbi, H. Griffiths, B. Raymond, U. d’Acoz C.d’, A. Van de Putte, B. Danis, B. David, S. Grant, J. Gutt, C. Held, G. Hosie, F. Huettmann, A. Post, & Y. Ropert-Coudert (Eds.)., Biogeographic Atlas of the Southern Ocean Biogeographic atlas of the Southern Ocean (pp. 245–252). Cambridge, UK: The Scientific Committee on Antarctic Research, Scott Polar Research Institute. www.scar.org. ISBN:978-0-948277-28-3., Chapter 5.31.

  • Schiaparelli, S., Albertelli, G., & Cattaneo-Vietti, R. (2003). The epibiotic assembly on the sponge Haliclona dancoi (Topsent, 1901) at Terra Nova Bay (Antarctica, Ross Sea). Polar Biology, 26, 342–347.

    Google Scholar 

  • Soldatou, S., & Baker, B. J. (2017). Cold-water marine natural products, 2006 to 2016. Natural Product Reports, 34, 585–626.

    Article  CAS  Google Scholar 

  • Tatián, M., Sahade, R., & Esnal, G. B. (2004). Diet components in the food of Antarctic ascidians living at low levels of primary production. Antarctic Science, 16, 123–128.

    Article  Google Scholar 

  • Totti, C., Calcinai, B., Cerrano, C., Camillo, C., Romagnoli, T., & Bavestrello, G. (2005). Diatom assemblages associated with Sphaerotylus antarcticus (Porifera: Demospongiae). Journal of the Marine Biological Association of the UK, 85, 795–800.

    Article  Google Scholar 

  • Vaca, I., Faúndez, C., Maza, F., Paillavil, B., Hernández, V., Acosta, F., Levicán, G., Martínez, C., & Chávez, R. (2013). Cultivable psychrotolerant yeasts associated with Antarctic marine sponges. World Journal of Microbiology and Biotechnology, 29, 183–189.

    Article  CAS  Google Scholar 

  • Webster, N., & Bourne, D. (2007). Bacterial community structure associated with the Antarctic soft coral, Alcyonium antarcticum. FEMS Microbiology Ecology, 59, 81–94.

    Article  CAS  Google Scholar 

  • Webster, N. S., Negri, A. P., Munro, M. M. H. G., & Battershill, C. N. (2004). Diverse microbial communities inhabit Antarctic sponges. Environmental Microbiology, 6, 288–300.

    Article  Google Scholar 

  • Xin, Y., Kanagasabhapathy, M., Janussen, D., Xue, S., & Zhang, W. (2011). Phylogenetic diversity of Gram-positive bacteria cultured from Antarctic deep-sea sponges. Polar Biology, 34, 1501–1512.

    Article  Google Scholar 

Download references

Acknowledgement

This chapter was supported by grants from the Italian Programma Nazionale di Ricerche in Antartide, Project PNRA16_00020, “Antarctic Porifera: Hot-spots for prokaryotic diversity and biotechnological potentialities” (PEA Code 2016/AZ1.08). All images but Fig. 13.1 have been made by Stefano Schiaparelli during different dives in Tethys Bay (Terra Nova Bay) (© PNRA). The PNRA project GEOSMART (2013/AZ2.06, PI Paolo Montagna) is acknowledged for the ROV image of Fig. 13.1, taken by Simonepietro Canese in Adelie Cove (Terra Nova Bay).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angelina Lo Giudice .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lo Giudice, A., Azzaro, M., Schiaparelli, S. (2019). Microbial Symbionts of Antarctic Marine Benthic Invertebrates. In: Castro-Sowinski, S. (eds) The Ecological Role of Micro-organisms in the Antarctic Environment. Springer Polar Sciences. Springer, Cham. https://doi.org/10.1007/978-3-030-02786-5_13

Download citation

Publish with us

Policies and ethics