Skip to main content

Multifunctional Exoskeletal Orthosis for Hand Rehabilitation Based on Virtual Reality

  • Conference paper
  • First Online:
Information and Communication Technologies of Ecuador (TIC.EC) (TICEC 2018)

Abstract

Within the field of physical rehabilitation in patients with fine motor deficits due to tendon injuries, this article is a novel proposal for the treatment and recovery of hand mobility. The mechanism works within virtual environments designed according to the needs of the beneficiary, through a mechatronic prototype controlled by algorithms based on fuzzy logic, the data sent by the Unity3D graphics engine and bending sensors is verified. The results of this system are focused on the process of digital signals for activation of the force feedback mechanism, this is done through the use of a flexible orthosis that allows the flexion and contraction of the fingers of the hand, thanks to this, excellent control results and an adequate performance in the development and execution of the proposed tasks in the virtual environment are obtained in a way that significantly promotes and improves the quality of life of the user.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Holden MK (2005) Virtual environments for motor rehabilitation: review. Cyberpsychol Behav 8:187–211

    Article  Google Scholar 

  2. Rose FD, Brooks BM, Rizzo AA (2005) Virtual reality in brain damage rehabilitation: review. Cyberpsychol Behav 8:241–262

    Article  Google Scholar 

  3. Mundial B (2011) Informe mundial sobre la discapacidad 2011

    Google Scholar 

  4. Song Z, Guo S, Yazid M (2011) Development of a potential system for upper limb rehabilitation training based on virtual reality. Presented at the May 2011

    Google Scholar 

  5. Petersen RC, Smith GE, Waring SC, Ivnik RJ, Tangalos EG, Kokmen E (1999) Mild cognitive impairment: clinical characterization and outcome. Arch Neurol 56:303

    Article  Google Scholar 

  6. World Health Organization (1980) International classification of impairments, disabilities, and handicaps: a manual of classification relating to the consequences of disease, published in accordance with resolution WHA29. In: 35 of the twenty-ninth World Health Assembly, May 1976

    Google Scholar 

  7. van Swieten JC, Koudstaal PJ, Visser MC, Schouten HJ, van Gijn J (1988) Interobserver agreement for the assessment of handicap in stroke patients. Stroke 19:604–607

    Article  Google Scholar 

  8. Jack D, Boian R, Merians AS, Tremaine M, Burdea GC, Adamovich SV, Recce M, Poizner H (2001) Virtual reality-enhanced stroke rehabilitation. IEEE Trans Neural Syst Rehabil Eng 9:308–318

    Article  Google Scholar 

  9. Kim SL, Suk HJ, Kang JH, Jung JM, Laine TH, Westlin J (2014) Using unity 3D to facilitate mobile augmented reality game development. Presented at the 2014 IEEE World Forum on Internet of Things (WF-IoT)

    Google Scholar 

  10. Vallejos D, García J, Muñoz E, Flórez J. Entorno Gráfico de un Entrenador Virtual de Prótesis de Mano. Artíc. Investig. Univ. Cauca Recuperado. www.unicauca.edu.co/ai/publicaciones/VallejosGarcia2009.pdf

  11. Matos N, Santos A, Vasconcelos A (2015) A virtual rehabilitation solution using multiple sensors. In: Fardoun HM, Penichet VMR, Alghazzawi DM (eds) ICTs for improving patients rehabilitation research techniques. Springer, Heidelberg, pp 143–154

    Chapter  Google Scholar 

  12. Brunon-Martinez A, Romain M, Roux J-L (2006) Rehabilitación de las lesiones tendinosas traumáticas de la mano. EMC - Kinesiterapia - Med Física 27:1–21

    Article  Google Scholar 

  13. Terrade P, Ovieve J-M, Chapin-Bouscarat B (2010) Rehabilitación de las lesiones osteoligamentosas de los dedos de la mano. EMC - Kinesiterapia - Med Física 31:1–17

    Article  Google Scholar 

  14. Florez CAC, Montanez JAM, Moreno RJ (2013) Design and construction of a prototype rehabilitation machine to hand and wrist. Presented at the October 2013

    Google Scholar 

  15. Kouro S, Musalem R (2002) Control mediante lógica difusa. Téc Mod Autom 7:1–7

    Google Scholar 

  16. Paysant J, Foisneau-Lottin A, Gable C, Gavillot-Boulangé C, Galas J-M, Hullar M, Kwiatek H, Lechaudel C, Pétry D, André J-M (2007) Ortesis de la mano. EMC - Kinesiterapia - Med Física 28:1–15

    Article  Google Scholar 

  17. Vélez DA, Coello HA (2017) Discapacidad: Un reto para la inclusión participativa y la igualdad. Dominio Las Cienc 4:16

    Google Scholar 

  18. Mancisidor A, Zubizarreta A, Cabanes I, Bengoa P, Hyung Jung J (2018) Dispositivo Robótico Multifuncional para la Rehabilitación de las Extremidades Superiores. Rev Iberoam Automática E Informática Ind 15:180

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcelo V. Garcia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cartagena, P.D., Naranjo, J.E., Saltos, L.F., Garcia, C.A., Garcia, M.V. (2019). Multifunctional Exoskeletal Orthosis for Hand Rehabilitation Based on Virtual Reality. In: Botto-Tobar, M., Barba-Maggi, L., González-Huerta, J., Villacrés-Cevallos, P., S. Gómez, O., Uvidia-Fassler, M. (eds) Information and Communication Technologies of Ecuador (TIC.EC). TICEC 2018. Advances in Intelligent Systems and Computing, vol 884. Springer, Cham. https://doi.org/10.1007/978-3-030-02828-2_16

Download citation

Publish with us

Policies and ethics