Skip to main content

Global Maximum Power Point Tracking Based on Intelligent Approach for Photovoltaic System Under Partial Shading Conditions

  • Conference paper
  • First Online:
Advances in Soft Computing (MICAI 2017)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10632))

Included in the following conference series:

  • 379 Accesses

Abstract

This paper presents the design of a controller for Maximum Power Point Tracking (MPPT) of a photovoltaic system. The proposed controller relies upon a Recurrent Neuro-Fuzzy (RNF) which is designed as a combination of the concepts of Sugeno fuzzy model and neural network. The controller employs the RNF of four-layer with sixty-four fuzzy rules. Moreover, for the proposed RNF an improved self-tuning method is developed based on the photovoltaic system and its high performance requirements. The principal task of the tuning method is to adjust the parameters of the Fuzzy Logic (FL) in order to minimize the square of the error between actual and reference output. Simulations with practical parameters show that our proposed MPPT using RNF outperform the conventional MPPT controller terms of tracking speed and accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 74.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Luque, A., Hegedus, S.: Handbook of Photovoltaic Science and Engineering, 2nd edn. Wiley, Hoboken (2010)

    Book  Google Scholar 

  2. Sick, F., Erge, T.: Photovoltaic in Building. International Energy Agency, Paris (1996)

    Google Scholar 

  3. Enrique, J.M., Andujar, J.M., Bohorquez, M.A.: A reliable, fast and low cost maximum power point tracker for photovoltaic applications. Sol. Energy 84, 79–89 (2010). https://doi.org/10.1016/j.solener.2009.10.011

    Article  Google Scholar 

  4. Hohm, D.P., Ropp, M.E.: Comparative study of maximum power point tracking algorithms. Prog. Photovolt. Res. Appl. 11(1), 47–62 (2003). https://doi.org/10.1002/pip.459

    Article  Google Scholar 

  5. Esram, T., Chapman, P.L.: Comparison of photovoltaic array maximum power point tracking techniques. IEEE Trans. Energy Convers. 22(2), 439–449 (2007)

    Article  Google Scholar 

  6. Dileep, G., Singh, S.: Maximum power point tracking of solar photovoltaic system using modified perturbation and observation method. Renew. Sustain. Energy Rev. 50, 109–129 (2015). https://doi.org/10.1016/j.rser.2015.04.072

    Article  Google Scholar 

  7. Messalti, S., Harrag, A., Loukriz, A.: A new neural networks MPPT controller for PV systems. In: Proceedings of the Renewable Energy Congress (IREC) (2015). https://doi.org/10.1109/irec.2015.7110907

  8. Chekired, F., Mellit, A., Kalogirou, S., Larbes, C.: Intelligent maximum power point trackers for photovoltaic applications using {FPGA} chip: a comparative study. Sol. Energy 101, 83–99 (2014). https://doi.org/10.1016/j.solener.2013.12.026

    Article  Google Scholar 

  9. Lyden, S., Haque, M.: Maximum power point tracking techniques for photovoltaic systems: a comprehensive review and comparative analysis. Renew. Sustain. Energy Rev. 52, 1504–1518 (2015). https://doi.org/10.1016/j.rser.2015.07.172

    Article  Google Scholar 

  10. Bendib, B., Belmili, H., Krim, F.: A survey of the most used {MPPT} methods: conventional and advanced algorithms applied for photovoltaic systems. Renew. Sustain. Energy Rev. 45, 637–648 (2015). https://doi.org/10.1016/j.rser.2015.02.009

    Article  Google Scholar 

  11. Radjai, T., Gaubert, J.P., Rahmani, L., Mekhilef, S.: Experimental verification of po MPPT algorithm with direct control based on fuzzy logic control using CUK converter. Int. Trans. Electr. Energy Syst. 25(12), 3492–3508 (2015). https://doi.org/10.1002/etep.2047

    Article  Google Scholar 

  12. Radjai, T., Rahmani, L., Mekhilef, S., Gaubert, J.P.: Implementation of a modified incremental conductance {MPPT} algorithm with direct control based on a fuzzy duty cycle change estimator using dspace. Sol. Energy 110, 325–337 (2014). https://doi.org/10.1016/j.solener.2014.09.014

    Article  Google Scholar 

  13. Dounis, A.I., Kofinas, P., Alafodimos, C., Tseles, D.: Adaptive fuzzy gain scheduling PID controller for maximum power point tracking of photovoltaic system. Renew. Energy 60, 202–214 (2013). https://doi.org/10.1016/j.renene.2013.04.014Technicalnote

    Article  Google Scholar 

  14. Chekired, F., Larbes, C., Rekioua, D., Haddad, F.: Implementation of a {MPPT} fuzzy controller for photovoltaic systems on FPGA circuit. Energy Proc. 6, 541–549 (2011). https://doi.org/10.1016/j.egypro.2011.05.062

    Article  Google Scholar 

  15. Messai, A., Mellit, A., Pavan, A.M., Guessoum, A., Mekki, H.: FPGA-based implementation of a fuzzy controller (MPPT) for photovoltaic module. Energy Convers. Manag. 52(7), 2695–2704 (2011). https://doi.org/10.1016/j.enconman.2011.01.021

    Article  Google Scholar 

  16. Larbes, C., Cheikh, S.A., Obeidi, T., Zerguerras, A.: Genetic algorithms optimized fuzzy logic control for the maximum power point tracking in photovoltaic system. Renew. Energy 34(10), 2093–2100 (2009). https://doi.org/10.1016/j.renene.2009.01.006

    Article  Google Scholar 

  17. Cheng, P.-C., Peng, B.-R., Liu, Y.-H., Cheng, Y.-S., Huang, J.-W.: Optimization of a fuzzy logic-control-based MPPT algorithm using the particle swarm optimization technique. Energies 8(6), 5338–5360 (2015). https://doi.org/10.3390/en8065338

    Article  Google Scholar 

  18. Lin, W.-M., Hong, C.-M., Chen, C.-H.: Neural-network-based MPPT control of a standalone hybrid power generation system. IEEE Trans. Power Electron. 26(12), 3571–3581 (2011). https://doi.org/10.1109/TPEL.2011.2161775

    Article  Google Scholar 

  19. Liu, Y.-H., Liu, C.-L., Huang, J.-W., Chen, J.-H.: Neural-network-based maximum power point tracking methods for photovoltaic systems operating under fast changing environments. Sol. Energy 89, 42–53 (2013). https://doi.org/10.1016/j.solener.2012.11.017

    Article  Google Scholar 

  20. Hatti, M., Meharrar, A., Tioursi, M.: Power management strategy in the alternative energy photovoltaic/PEM fuel cell hybrid system. Renew. Sustain. Energy Rev. 15(9), 5104–5110 (2011). https://doi.org/10.1016/j.rser.2011.07.046

    Article  Google Scholar 

  21. Boumaaraf, H., Talha, A., Bouhali, O.: A three-phase {NPC} grid-connected inverter for photovoltaic applications using neural network {MPPT}. Renew. Sustain. Energy Rev. 49, 1171–1179 (2015). https://doi.org/10.1016/j.rser.2015.04.066

    Article  Google Scholar 

  22. Kulaksız, A.A., Akkaya, R.: A genetic algorithm optimized ANN-based {MPPT} algorithm for a stand-alone {PV} system with induction motor drive. Sol. Energy 86(9), 2366–2375 (2012). https://doi.org/10.1016/j.solener.2012.05.006

    Article  Google Scholar 

  23. Ramaprabha, R., Gothandaraman, V., Kanimozhi, K., Divya, R., Mathur, B.: Maximum power point tracking using GA-optimized artificial neural network for solar PV system. In: Proceedings of the Electrical Energy Systems (ICEES), pp. 264–268 (2011). https://doi.org/10.1109/icees.2011.5725340

  24. Chaouachi, A., Kamel, R.M., Nagasaka, K.: A novel multi-model neuro-fuzzy-based {MPPT} for three-phase grid-connected photovoltaic system. Sol. Energy 84(12), 2219–2229 (2010). https://doi.org/10.1016/j.solener.2010.08.004

    Article  Google Scholar 

  25. Villalva, M.G., Gazoli, G.R., Filho, E.R.: Comprehensive approach to modeling and simulation of photovoltaic arrays. IEEE Trans. Power Electron. 24(5), 1198–1208 (2009). https://doi.org/10.1109/TPEL.2009.2013862

    Article  Google Scholar 

  26. Zhang, Y., Sen, P., Hearn, G.E.: On-line trained adaptive neural controller. IEEE Control Syst. 15(5), 67–75 (1995). https://doi.org/10.1109/37.466260

    Article  Google Scholar 

  27. Tey, K.S., Mekhilef, S.: Modified incremental conductance algorithm for photovoltaic system under partial shading conditions and load variation. IEEE Trans. Ind. Electron. 61(10), 5384–5391 (2014). https://doi.org/10.1109/TIE.2014.2304921

    Article  Google Scholar 

  28. Koutroulis, E., Blaabjerg, F.: A new technique for tracking the global maximum power point of PV arrays operating under partial shading conditions. IEEE J. Photovolt. 2(2), 184–190 (2012). https://doi.org/10.1109/JPHOTOV.2012.2183578

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moulay Rachid Douiri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Douiri, M.R., Douiri, S.M. (2018). Global Maximum Power Point Tracking Based on Intelligent Approach for Photovoltaic System Under Partial Shading Conditions. In: Castro, F., Miranda-Jiménez, S., González-Mendoza, M. (eds) Advances in Soft Computing. MICAI 2017. Lecture Notes in Computer Science(), vol 10632. Springer, Cham. https://doi.org/10.1007/978-3-030-02837-4_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-02837-4_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-02836-7

  • Online ISBN: 978-3-030-02837-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics