Skip to main content

Phenolic Acids and Their Health-Promoting Activity

  • Chapter
  • First Online:
Plant and Human Health, Volume 2

Abstract

Plants are the primary sources for most of the food items for all organisms. Human beings have also used plants for purposes other than food, for example, for making tools and houses as well as medicine. Most of the civilizations have a rich history of traditional medicine based on plant extracts or preparations. In last few centuries, the active compounds from plants have been isolated and characterized. These active compounds belong to class of molecules called as secondary metabolites which are further divided into several subclasses: alkaloids, polyphenols, flavonoids, and terpenes. Polyphenols are a large group of secondary metabolites in plants. They are widely distributed among the plant species and are found in vegetables, fruits, and beans for tea and coffee. The common examples of polyphenols are flavonoids, phenolic acids, and lignans. There are many biological and pharmacological activities attributed to the phenolic acids. They have antioxidant, anti-inflammatory, and cytoprotective properties. With the emergence of diabetes as major metabolic disorder, there has been a search for natural compounds. In last two decades, there are many reports which have suggested the role of phenolic acids in the prevention of glycation-mediated secondary complications of diabetes. This chapter deals with the recent advances in the field of phenolic acids and their application in the treatment of disorders like diabetes and neurodegeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AGE:

Advanced glycation end product

PRP:

Proline-rich proteins

RNS:

Reactive nitrogen species

ROS:

Reactive oxygen species

SOM:

Soil organic matter

References

  • Aherne SA, O’Brien NM (2002) Dietary flavanols: chemistry, food content and metabolism. Nutrition 18:75–81

    Article  CAS  PubMed  Google Scholar 

  • Ahmed N (2005) Advanced glycation end-products - role in pathology of diabetic complications. Diabetes Res Clin Pract 67:3–21

    Article  CAS  PubMed  Google Scholar 

  • Ali A, Sharma R, Sivakami S (2014) Role of natural compounds in the prevention of DNA and proteins damage by glycation. Bionano Front 7:25–30

    Google Scholar 

  • Alov P, Tsakovska I, Pajeva I (2015) Computational studies of free radical- scavenging properties of phenolic compounds. Curr Top Med Chem 15:85–104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anani K, Adjrah Y, Ameyapoh Y, Karou SD, Agbonon A, de Souza C, Gbeassor M (2015) Effects of hydroethanolic extracts of Balanitesaegyptiaca (L.) Delile (Balanitaceae) on some resistant pathogens bacteria isolated from wounds. J Ethnopharmacol 164:16–21

    Article  PubMed  Google Scholar 

  • Apostolidis E, Kwon YI, Shetty K (2006) Potential of cranberry-based herbal synergies for diabetes and hypertension management. Asia Pac J Clin Nutr 15:433–441

    CAS  PubMed  Google Scholar 

  • Apostolidis E, Kwon YI, Shetty K (2007) Inhibitory potential of herb, fruit, and fungal-enriched cheese against key enzymes linked to type 2 diabetes and hypertension. Inn Food Sci Emerg Technol 8:46–54

    Article  CAS  Google Scholar 

  • Appel HM (1993) Phenolics in ecological interactions: the importance of oxidation. J Chem Ecol 19(7):1521–1552

    Article  CAS  PubMed  Google Scholar 

  • Arct J, Bielenda B, Oborska A, Pytkowska K (2003) The tea and its cosmetic application. J Appl Cosmetol 21:117–127

    Google Scholar 

  • Arct J, Pytkowska K (2008) Flavonoids as components of biologically active cosmeceuticals. Clin Dermatol 26:347–357

    Article  PubMed  Google Scholar 

  • Ashok PK, Upadhyaya K (2012) Tannins are astringent. J Pharmacogn Phytochem 1:45–50

    CAS  Google Scholar 

  • Ayres DC, Loike JD (1990) Lignans: chemical, biological & clinical properties. Cambridge University Press, Cambridge, UK

    Book  Google Scholar 

  • Bakkalbasi E, Mentes O, Artik N (2009) Food ellagitannins— occurrence, effects of processing and storage. Crit Rev Food Sci Nutr 49:283–298

    Article  CAS  PubMed  Google Scholar 

  • Banan P, Ali A (2016) Preventive effect of phenolic acids on in vitro glycation. Ann Phytomed 5:97–102

    Article  CAS  Google Scholar 

  • Bazzocco S, Mattila I, Guyot S (2008) Factors affecting the conversion of apple polyphenols to phenolic acids and fruit matrix to short-chain fatty acids by human faecalmicrobiota in vitro. Eur J Nutr 47:442–452

    Article  CAS  PubMed  Google Scholar 

  • Beninger CW, Gu L, Prior RL (2007) Changes in polyphenols of the seed coat during the after-darkening process in pinto beans (Phaseolus vulgaris L.). J Agric Food Chem 53:7777–7782

    Article  CAS  Google Scholar 

  • Berrou J, Tostivint I, Verrecchia F, Berthier C, Boulanger E, Mauviel A, Marti HP, Wautier MP, Wautier JL, Rondeau E, Hertig A (2009) Advanced glycation end-products regulate extracellular matrix protein and protease expression by human glomerular mesangial cells. Int J Mol Med 23:513–520

    CAS  PubMed  Google Scholar 

  • Bitsch R (1996) Pflanzen Phenol und ihregesundheitlicheWirkung. Natwiss Rundsch 2:47–51

    Google Scholar 

  • Booker FL, Maier CA (2001) Atmospheric carbon dioxide, irrigation, and fertilization effects on phenolic and nitrogen concentrations in loblolly pine (Pinus taeda) needles. Tree Physiol 21(9):609–616

    Article  CAS  PubMed  Google Scholar 

  • Bragazza L, Freeman C, Jones T (2006) Atmospheric nitrogen deposition promotes carbon loss from peat bogs. Proc Natl Acad Sci U S A 103(51):19386–19389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bravo L (1998) Polyphenols: chemistry, dietary sources, metabolism, and nutritional significance. Nutr Rev 56(11):317–333

    Article  CAS  PubMed  Google Scholar 

  • Breinholt V (1999) Desirable versus harmful levels of intake of flavonoids and phenolic acids. In: Kumpulainen JT, Salonen JT (eds) Natural antioxidants and anticarcinogens in nutrition, health and disease. The Royal Society of Chemistry, London, UK, pp 93–99

    Chapter  Google Scholar 

  • Buendia B, Gil MI, Tudela JA (2010) HPLC-MS analysis of proanthocyanidin oligomers and other phenolics in 15 strawberry cultivars. J Agric Food Chem 58:3916–3926

    Article  CAS  PubMed  Google Scholar 

  • Cai K, Bennick A (2006) Effect of salivary proteins on the transport of tannin and quercetin across intestinal epithelial cells in culture. Biochem Pharmacol 72:974–980

    Article  CAS  PubMed  Google Scholar 

  • Cai H, Xie Z, Liu G, Sun X, Peng G, Lin B, Liao Q (2014) Isolation, identification and activities of natural antioxidants from Callicarpa kwangtungensis chun. PLoS One 9:160

    Google Scholar 

  • Castelluccio C, Paganga G, Melikian N, Bolwell GP, Pridham J, Sampson J, Rice-Evans C (1995) Antioxidant potential of intermediates in phenylpropanoid metabolism in higher plants. FEBS Lett 368:188–192

    Article  CAS  PubMed  Google Scholar 

  • Cinta B, Lluis A, Salvado M (2010) Hypolipidemic effects of proanthocyanidins and their underlying biochemical and molecular mechanisms. Mol Nutr Food Res 54:37–59

    Article  CAS  Google Scholar 

  • Clifford M, Scalbert A (2000) Ellagitannins—nature, occurrence and dietary burden. J Sci Food Agric 80:1118–1125

    Article  CAS  Google Scholar 

  • Czemplik M, Zuk M, Kulma A, Kuc S, Szopa J (2011) GMflax as a source of effective antimicrobial compounds. Sci Microb Pathog Commun Curr Res Technol Adv 76:39–47

    Google Scholar 

  • Decker EA (1995) Phenolics: prooxidants or antioxidants? Nutr Rev 10:210–219

    Google Scholar 

  • Drynan JW, Clifford MN, Obuchowicz J, Kuhnert N (2010) The chemistry of low molecular weight black tea polyphenols. Nat Prod Rep 27:417–462

    Article  CAS  PubMed  Google Scholar 

  • Dudonne S, Poupard P, Coutiere P, Woillez M, Richard T, Merillon JM, Vitrac X (2011) Phenolic composition and antioxidant properties of poplar bud (Populus nigra) extract: Individual antioxidant contribution of phenolics and transcriptional effect on skin aging. J Agric Food Chem 59:4527–4536

    Article  CAS  PubMed  Google Scholar 

  • Ellis T, Hill PW, Fenner N, Williams GG, Godbold D, Freeman C (2009) The interactive effects of elevated carbon dioxide and water table drawdown on carbon cycling in a Welsh ombrotrophic bog. Ecol Eng 35(6):978–986

    Article  Google Scholar 

  • Evans WC (1996) Trease and Evans’ pharmacognosy, 14th edn. Harcourt Brace and Co, Singapore, pp 273–275

    Google Scholar 

  • Fernández de SB, Hernández T, Estrella I, Gómez-Cordovés C (1992) Variation in phenol content in grapes during ripening: Low-molecular-weight phenols. Z Lebensm Unters Forsch 194:351–354

    Article  Google Scholar 

  • Freeman C, Fenner N, Ostle NJ (2004) Export of dissolved organic carbon from peatlands under elevated carbon dioxide levels. Nature 430(6996):195–198

    Article  CAS  PubMed  Google Scholar 

  • Gil MI, Tomas-Barberan FA, Hess-Pierce B, Holcroft DM, Kafer AA (2000) Antioxidant activity of pomegranate juice and its relationship with phenolic composition and processing. J Agric Food Chem 48:4581–4589

    Article  CAS  PubMed  Google Scholar 

  • Gotham J (1989) Methods in plant biochemistry. In: Harborne JB (ed) Plant phenolics, vol Vol. 1. Academic Press, London, UK, pp 78–96

    Google Scholar 

  • Harbowy ME, Balentine DA (1997) Tea chemistry. CRC Crit Rev Plant Sci 16:415–480

    Article  CAS  Google Scholar 

  • Haslam E (2003) Thoughts on thearubigins. Phytochemistry 64:61–73

    Article  CAS  PubMed  Google Scholar 

  • Hasna E (2009) Polyphenols: food sources, properties and applications - a review. Int J Food Sci Technol 44:2512–2518

    Article  CAS  Google Scholar 

  • Hättenschwiler S, Vitousek PM (2000) The role of polyphenols in terrestrial ecosystem nutrient cycling. Trends Ecol Evol 15(6):238–242

    Article  PubMed  Google Scholar 

  • Heldt HW, Heldt F (1997) Plant biochemistry and molecular biology. Oxford University Press, Oxford; New York

    Google Scholar 

  • Heleno SA, Martins A, Queiroz MJ, Ferreira IC (2015) Bioactivity of phenolic acids: Metabolites versus parent compounds: A review. Food Chem 173:501–513

    Article  CAS  PubMed  Google Scholar 

  • Hertog MGL, Hollman PCH, Katan MB, Kromhout (1993) Intake of potentially anticarcinogenic flavonoids and their determinants in adults in The Netherlands. D Nutr Cancer 20:21–29

    Article  CAS  Google Scholar 

  • Ho CT (1993) In: Ohigashi H, Osawa T, Terao J, Walanabe S, Yoshikawa T (eds) Food factors for cancer prevention. Springer, Tokyo, Japan, pp 593–597

    Google Scholar 

  • Horner JD, Gosz JR, Cates RG (1988) The role of carbon-based plant secondary metabolites in decomposition in terrestrial ecosystems. Am Nat 132:869–883

    Article  Google Scholar 

  • Huang MT, Ferraro T (1882) In: Huang MT, Ho CT, Lee CY (eds) Phenolic compounds in food and their effects on health II: antioxidants & cancer prevention. American Chemical Society, Washington, D.C, pp 8–34

    Google Scholar 

  • Jang M, Cai L, Udeani GO, Slowing ΚV, Thomas CF, Beecher CWW, Fong HHS, Farnsworth NR, Kinghorn AD, Mehta RG, Moon RC, Pezzuto JM (1997) Cancer chemopreventive activity of resveratrol, a natural product derived from grapes. Science 275:218–220

    Article  CAS  PubMed  Google Scholar 

  • Kang MH, Naito M, Tsujihara N, Osawa T (1998) Sesamolin inhibits lipid peroxidation in rat liver and kidney. J Nutr 128:1018–1022

    Article  CAS  PubMed  Google Scholar 

  • Kennedy JA, Hayasaka Y, Vidal S (2001) Composition of grape skin proanthocyanidins at different stages of berry development. J Agric Food Chem 49:5348–5355

    Article  CAS  PubMed  Google Scholar 

  • Khaki A, Fatemek F, Mohammad N, Amir AK, Chelar CO, Marefat N (2009) The effects of ginger on spermatogenesis and sperm parameters. Iran J Reprod Med 7(1):7–12

    CAS  Google Scholar 

  • Koponen JM, Happonen AM, Mattila PH, Torronen AR (2007) Contents of anthocyanins and ellagitannins in selected foods consumed in Finland. J Agric Food Chem 55:1612–1619

    Article  CAS  PubMed  Google Scholar 

  • Kostolanska J, Jakus V, Barak L (2009) Monitoring of early and advanced glycation in relation to the occurrence of microvascular complications in children and adolescents with type 1 diabetes mellitus. Physiol Res 58:553–561

    CAS  PubMed  Google Scholar 

  • Kraus TEC, Zasoski RJ, Dahlgren RA (2004) Fertility and pH effects on polyphenol and condensed tannin concentrations in foliage and roots. Plant Soil 262(1–2):95–109

    Article  CAS  Google Scholar 

  • Kuhnert N, Drynan JW, Obuchowicz J (2010) Mass spectrometric characterization of black tea thearubigins leading to an oxidative cascade hypothesis for thearubigin formation. Rapid Commun Mass Spectrom 24:3387–3404

    Article  CAS  PubMed  Google Scholar 

  • Kurzer MS, Xu X (1997) Dietary phytoestrogens. Annu Rev Nutr 17:353–381

    Article  CAS  PubMed  Google Scholar 

  • Langley RG, Krueger GG, Griffiths CE (2005) Psoriasis: Epidemiology, clinical features, and quality of life. Ann Rheum Dis 64(Suppl. 2):ii18–ii23

    PubMed  PubMed Central  Google Scholar 

  • Lin D, Xiao M, Zhao J, Li Z, Xing B, Li X, Kong M, Li L, Zhang Q, Liu Y, Chen H, Qin W, Wu H, Chen S (2016) An overview of plant phenolic compounds and their importance in human nutrition and management of Type 2 Diabetes. Molecules 21:2–19

    Google Scholar 

  • Lin JK (2004) In: Meskin MS, Bidlack WR, Davies AJ, Lewis D, Randolph RK (eds) Phytochemicals: mechanisms of action. CRC Press, Boca Raton, FL, pp 79–108

    Google Scholar 

  • Liu W, Wei Z, Ma H, Cai A, Liu Y, Sun J, DaSilva NA, Johnson SL, Kirschenbaum LJ, Cho BP, Dain JA, Rowley DC, Shaikh ZA, Seeram NPV (2017) Anti-glycation and anti-oxidative effects of a phenolic-enriched maple syrup extract and its protective effects on normal human colon cells. Food Funct 82:757–766

    Article  CAS  Google Scholar 

  • Macheix JJ, Fleuriet Α, Billot J (1990) Fruit phenolics. CRC Press, Boca Raton, FL

    Google Scholar 

  • Manach C, Hubert J, Llorach R, Scalbert A (2009) Review: the complex links between dietary phytochemicals and human health deciphered by metabolomics. Mol Nutr Food Res 53:1303–1315

    Article  CAS  PubMed  Google Scholar 

  • Mane C, Souquet JM, Olle D (2007) Optimization of simultaneous flavanol, phenolic acid, and anthocyanin extraction from grapes using an experimental design: application to the characterization of Champagne grape varieties. J Sci Food Agric 55:7224–7233

    Google Scholar 

  • Mattivi F, Guzzon R, Vrhovsek U (2006) Metabolite pro- filing of grape: flavonols and anthocyanins. J Agric Food Chem 54:7692–7702

    Article  CAS  PubMed  Google Scholar 

  • McDougall GJ, Shpiro F, Doboson P, Smith P, Blake A, Stewart D (2005) Different polyphenolic compounds of soft fruits inhibit α-amylase and α-glucosidase. J Agric Food Chem 53:2760–2766

    Article  CAS  PubMed  Google Scholar 

  • Milder IE, Arts IC, van de Putte B, Venema DP, Hollman PC (2005) Lignan contents of Dutch plant foods: a database including lariciresinol, pinoresinol, secoisolariciresinol and matairesinol. Br J Nutr 93:393–402

    Article  CAS  PubMed  Google Scholar 

  • Moo-Huchin VM, Moo-Huchin MI, Estrada-León RJ, Cuevas-Gloryc L, Estrada-Motaa IA, Ortiz-Vázquezc E, Betancur-Anconad D, Sauri-Duchc E (2015) Antioxidant compounds, antioxidant activity and phenolic content in peel from three tropical fruits from Yucatan, Mexico. Food Chem 166:17–22

    Article  CAS  PubMed  Google Scholar 

  • Nadkarni KM (1998) Indian materiamedica, 3rd edn. Bombay Popular Prakashan, Mumbai, pp 830–834

    Google Scholar 

  • Norby RJ, Cotrufo MF, Ineson P, O'Neill EG, Canadell JG (2001) Elevated CO2, litter chemistry, and decomposition: a synthesis. Oecologia 127(2):153–165

    Article  PubMed  Google Scholar 

  • Nybakken L, Johansson O, Palmqvist K (2009) Defensive compound concentration in boreal lichens in response to simulated nitrogen deposition. Glob Chang Biol 15(9):2247–2260

    Article  Google Scholar 

  • Ollis WD, Brown AG, Haslam E (1966) The constitution of theaflavin. Tetrahedron Lett 1193–1204

    Google Scholar 

  • Ososki AL, Kennelly EJ (2009) Phytoestrogens: A review of the present state of research. Phytother Res 17:845–869

    Article  CAS  Google Scholar 

  • Oszmianski J, Wojdylo A (2009) Comparative study of phenolic content and antioxidant activity of strawberry puree, clear, and cloudy juices. Eur Food Res Technol 228:623–631

    Article  CAS  Google Scholar 

  • Ozo NO, Caygill JC (1986) O-dihydroxyphenoloxidase action on natural polyhydric phenolics and enzymic browning of edible yams. J Sci Food Agric 37:283–288

    Article  CAS  Google Scholar 

  • Pastore S, Potapovich A, Kostyuk V, Mariani V, Lulli D, de Luca C, Korkina L (2009) Plant Polyphenols Effectively Protect Hacat Cells from Ultraviolet C-Triggered Necrosis and Suppress Inflammatory Chemokine Expression. Ann N Y Acad Sci 1171:305–313

    Article  CAS  PubMed  Google Scholar 

  • Penuelas J, Estiarte M (1998) Can elevated carbon dioxide affect secondary metabolism and ecosystem function? Trends Ecol Evol 13(1):20–24

    Article  CAS  PubMed  Google Scholar 

  • Pinho E, Ferreira IC, Barros L, Carvalho AM, Soares G, Henriques M (2014) Antibacterial potential of northeastern Portugal wild plant extracts and respective phenolic compounds. Biomed Res Int 2014:814590

    Article  PubMed  PubMed Central  Google Scholar 

  • Pourcel L, Routaboul JM, Cheynier V (2007) Flavonoid oxidation in plants: from biochemical properties to physiological functions. Trends Plant Sci 12:29–36

    Article  CAS  PubMed  Google Scholar 

  • Quideau S, Deffieux D, Douat-Casassus C, Pouyse’gu L (2011) Plant polyphenols: chemical properties, biological activities, and synthesis. Angew Chem Int Ed Engl 50:586–621

    Article  CAS  PubMed  Google Scholar 

  • Raisanen T, Ryyppo A, Julkunen-Tiitto R, Kellomaki S (2008) Effects of elevated carbon dioxide and temperature on secondary compounds in the needles of Scots pine (Pinus sylvestris). Trees 22(1):121–135

    Article  CAS  Google Scholar 

  • Rhein LD, Fluhr JW (2010) Aging skin: current and future therapeutic strategies. Allured Business Media, Carol Stream, IL, USA, pp 182–184, 225–240

    Google Scholar 

  • Roberts EAH, Cartwright RA, Oldschool M (1959) The phenolic substances of manufactured tea. I. Fractionation and paper chromatography of water-soluble substances. J Sci Food Agric 8:72–80

    Article  Google Scholar 

  • Sadowska-Bartosz I, Bartosz G (2014) Effect of antioxidants supplementation on aging and longevity. Biomed Res Int 2014:404680

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sapis JC, Macheix JJ, Cordonnier RE (1983) The browning capacity of grapes. II. Browning potential and polyphenol oxidase activities in different mature grape varieties [Red and white]. J Agric Food Chem 31:342–345

    Article  CAS  Google Scholar 

  • Schroder H (2007) Protective mechanisms of the Mediterranean diet in obesity and type 2 diabetes. J Nutr Biochem 18:149–160

    Article  PubMed  CAS  Google Scholar 

  • Shin S, Lee J, Kim M, Kum H, Jung E, Park D (2015) Anti-glycation activities of phenolic constituents from Silybum marianum (Milk Thistle) flower in vitro and on human explants. Molecules 20:549–564

    Google Scholar 

  • Siegenthaler A, Buttler A, Bragazza L (2010) Litter- and ecosystem-driven decomposition under elevated CO2 and enhanced N deposition in a Sphagnum peatland. Soil Biol Biochem 42(6):968–977

    Article  CAS  Google Scholar 

  • Sies H (2010) Polyphenols and health: update and perspectives. Arch Biochem Biophys 501:2–5

    Article  CAS  PubMed  Google Scholar 

  • Sinsabaugh RL (2010) Phenol oxidase, peroxidase and organic matter dynamics of soil. Soil Biol Biochem 42(3):391–404

    Article  CAS  Google Scholar 

  • Tanaka T, Matsuo Y, Kouno I (2010) Chemistry of secondary polyphenols produced during processing of tea and selected foods. Int J Mol Sci 11:14–40

    Article  CAS  Google Scholar 

  • Taylor SL, Higley ΝΑ, Bush RK (1986) Sulfites in foods: uses, analytical methods, residues, fate, exposure assessment, metabolism, toxicity, and hypersensitivity. Adv Food Res 30:1–76

    Article  CAS  PubMed  Google Scholar 

  • Toberman H, Laiho R, Evans CD (2010) Long-term drainage for forestry inhibits extracellular phenol oxidase activity in Finnish boreal mire peat. Eur J Soil Sci 61(6):950–957

    Article  Google Scholar 

  • Torronen R (2009) Sources and health effects of dietary ellagitannins. In: Quideau S (ed) Chemistry and biology of ellagitannins—an underestimated class of bioactive plant polyphenols. World Scientific, Singapore, pp 298–319

    Chapter  Google Scholar 

  • Tsuda T (2008) Regulation of adipocyte function by anthocyanins: possibility of preventing the metabolic syndrome. J Agric Food Chem 56:642–646

    Article  CAS  PubMed  Google Scholar 

  • Ucle´s SJR, Bakry FB, Rillouet JM (2010) A preliminary chemotaxonomic study on the condensed tannins of green banana flesh in the Musa genus. Biochem Syst Ecol 38:1010–1017

    Google Scholar 

  • Umukoro S, Ashorobi RB (2007) Further studies on the antinociceptive action of aqueous seed extract of Aframomum melegueta. J Ethnopharmacol 109:501–504

    Article  PubMed  Google Scholar 

  • Veteli TO, Mattson WJ, Niemella P (2007) Do elevated temperature and carbon dioxide generally have counteracting effects on phenolic phytochemistry of boreal trees? J Chem Ecol 33(2):287–296

    Article  CAS  PubMed  Google Scholar 

  • Wilson T, Singh AP, Vorsa N (2008) Human glycemic response and phenolic content of unsweetened cranberry juice. J Med Food 11:46–54

    Article  CAS  PubMed  Google Scholar 

  • Wojdylo A, Oszmianski J, Laskowski P (2008) Polyphenolic compounds and antioxidant activity of new and old apple varieties. J Agric Food Chem 56:6520–6530

    Article  CAS  PubMed  Google Scholar 

  • Wu LC, Prior R (2005a) Systematic identification and characterization of anthocyanins by HPLC-ESI-MS/MS in common foods in the United States: fruits and berries. J Agric Food Chem 53:2589–2599

    Article  CAS  PubMed  Google Scholar 

  • Wu LC, Prior R (2005b) Identification and characterization of anthocyanins by high-performance liquid chromatography-electrospray ionization-tandem mass spectrometry in common foods in the United States: vegetables, nuts, and grains. J Agric Food Chem 53:3101–3113

    Article  CAS  PubMed  Google Scholar 

  • Wu T, He M, Zang X, Zhou Y, Qiu T, Pan S, Xu X (2013, 1828) A structure-activity relationship study of flavonoids as inhibitors of E. coli by membrane interaction effect. Biochim Biophys Acta BBA Biomem:2751–2756

    Google Scholar 

  • Yi W, Wetzstein HY (2010) Biochemical, biological and histological evaluation of some culinary and medicinal herbs grown under greenhouse and field conditions. J Sci Food Agric 90(6):1063–1070

    CAS  PubMed  Google Scholar 

  • Yoo HG, Lee BH, Kim W, Lee JS, Kim GH, Chun OK, Koo SI, Kim DO (2014) Lithospermum erythrorhizon extract protects keratinocytes and fibroblasts against oxidative stress. J Med Food 17:1189–1196

    Article  CAS  PubMed  Google Scholar 

  • Yui S, Fujiwara S, Harada K, Motoike-Hamura M, Sakai M, Matsubara S, Miyazak K (2017) Beneficial effects of lemon balm leaf extract on in vitro glycation of proteins, arterial stiffness, and skin elasticity in healthy adults. JJ Nutr Sci Vitaminol 63:59–68

    Article  CAS  Google Scholar 

  • Zvereva EL, Kozlov MV (2006) Consequences of simultaneous elevation of carbon dioxide and temperature for plant-herbivore interactions: a meta analysis. Glob Chang Biol 12(1):27–41

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmad Ali .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Khatri, S., Paramanya, A., Ali, A. (2019). Phenolic Acids and Their Health-Promoting Activity. In: Ozturk, M., Hakeem, K. (eds) Plant and Human Health, Volume 2. Springer, Cham. https://doi.org/10.1007/978-3-030-03344-6_27

Download citation

Publish with us

Policies and ethics