Skip to main content

The Role of Geospatial Technology with IoT for Precision Agriculture

  • Chapter
  • First Online:
Cloud Computing for Geospatial Big Data Analytics

Part of the book series: Studies in Big Data ((SBD,volume 49))

Abstract

Precision agriculture is mainly used to make the farming as user-friendly to achieve the desired production of a crop. With the latest Geospatial technologies, the analysis related to any type of application using the Internet of Things (IoT) made each and everyone, to materialize the things whatever is imagined. The geographic information collected from various sources and with this, IoT establishes a communication to the entire world through an Internet. The information will be helpful in the maintenance of the farmland by applying the required amount of fertilizer at the right time in the right place. It is expected that in the future, this type of smart agriculture with the application of information and communication technologies including IoT will definitely bring a revolution in the global agricultural scenario to make it more resource-efficient and productive. The main goal in combining the Geospatial technology with IoT for precision is to monitor and predict the critical parameters such as water quality, soil condition, ambient temperature and moisture, irrigation, and fertilizer for improving the crop production. It can be expected that with the help of Geospatial and IoT in smart farming, the prediction of the amount of fertilizer, weeds, and irrigation will be accurate and it helps the farmers in making decisions related to all the requirements in terms of control and supply.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Barik, R.K., Dubey, H., Misra, C., Borthakur, D., Constant, N., Sasane, S. A., Mankodiya, K.: Fog assisted cloud computing in era of Big Data and Internet-of-Things: systems, architectures, and applications. In: Cloud Computing for Optimization: Foundations, Applications, and Challenges, pp. 367–394. Springer, Cham (2018)

    Google Scholar 

  2. Thorp, K.R., Hunsaker, D.J., French, A.N., Bautista, E., Bronson, K.F.: Integrating geospatial data and cropping system simulation within a geographic information system to analyze spatial seed cotton yield, water use, and irrigation requirements. Precis. Agric. 16(5), 532–557 (2015)

    Article  Google Scholar 

  3. Tzounis, A., Katsoulas, N., Bartzanas, T., Kittas, C.: Internet of Things in agriculture, recent advances and future challenges. Biosyst. Eng. 164, 31–48 (2017)

    Article  Google Scholar 

  4. Coates, R.W., Delwiche, M.J., Broad, A., Holler, M.: Wireless sensor network with irrigation valve control. Comput. Electron. Agric. 96, 13–22 (2013)

    Article  Google Scholar 

  5. Faial, B.S., Costa, F.G., Pessin, G., Ueyama, J., Freitas, H., Colombo, A., Fini, P.H., Villas, L., Osorio, F.S., Vargas, P.A., Braun, T.: The use of unmanned aerial vehicles and wireless sensor networks for spraying pesticides. J. Syst. Archit. 60, 393–404 (2014)

    Article  Google Scholar 

  6. Alahi, M.E.E., Nag, A., Mukhopadhyay, S.C., Burkitt, L.: A temperature-compensated graphene sensor for nitrate monitoring in real-time application. Sens. Actuators A Phys. 269, 79–90 (2018)

    Article  Google Scholar 

  7. Martnez, J.L., Claraco, J.L.B., Alonso, J.P., Ferre, A.J.C.: Distributed network for measuring climatic parameters in heterogeneous environments: application in a greenhouse. Comput. Electron. Agric. 145, 105–121 (2018)

    Article  Google Scholar 

  8. Pajares, G.: Overview and current status of remote sensing applications based on unmanned aerial vehicles (UAVs). Photogramm. Eng. Remote Sens. 81, 281–329 (2015)

    Google Scholar 

  9. Polo, J., Hornero, G., Duijneveld, C., Garcia, A., Casas, O.: Design of a low-cost wireless sensor network with UAV mobile node for agricultural applications. Comput. Electron. Agric. 119, 19–32 (2015)

    Article  Google Scholar 

  10. Rawat, P., Singh, K.D., Chaouchi, H., Bonnin, J.M.: Wireless sensor networks: a survey on recent developments and potential synergies. J. Supercomput. 68, 1–48 (2014)

    Article  Google Scholar 

  11. Sanchez, A.J.G., Sanchez, F.G., Haro, J.G.: Wireless sensor network deployment for integrating video-surveillance and data-monitoring in precision agriculture over distributed crops. Comput. Electron. Agric. 75, 288–303 (2011)

    Article  Google Scholar 

  12. Afzal, B., Umair, M., Shah, G.A., Ahmed, E.: Enabling IoT platforms for social IoT applications: vision, feature mapping, and challenges. Future Gener. Comput. Syst. Available online 13 Dec 2017

    Google Scholar 

  13. Chen, M., Mao, S., Liu, Y.: Big Data: a survey. Mob. Netw. Appl. 19, 171–209 (2014)

    Article  Google Scholar 

  14. DeRen, L., JianJun, C., Yuan, Y.: Big data in smart cities. Sci. China Inf. Sci. 58 (2015)

    Google Scholar 

  15. Aazam, M., Zeadally, S., Harras, K.A.: Offloading in fog computing for IoT: review, enabling technologies, and research opportunities. Future Gener. Comput. Syst. 87, 278–289 (2018)

    Article  Google Scholar 

  16. Panigrahi, C.R., Sarkar, J.L., Pati, B., Das, H.: S2S: a novel approach for source to sink node communication in wireless sensor networks. In: International Conference on Mining Intelligence and Knowledge Exploration, pp. 406–414. Springer, Cham (2015)

    Google Scholar 

  17. Bhanumathi, V., Kalaivanan, K.: Application specific sensor-cloud: architectural model. In: Mishra, B., Dehuri, S., Panigrahi, B., Nayak, A., Mishra, B., Das, H. (eds.) Computational Intelligence in Sensor Networks. Studies in Computational Intelligence, vol. 776, pp. 277–305. Springer, Berlin, Heidelberg (2019)

    Google Scholar 

  18. Barkunan, S.R., Bhanumathi, V.: An efficient deployment of sensor nodes in wireless sensor networks for agricultural field. J. Inf. Sci. Eng. 34(4), 903–918 (2018)

    Google Scholar 

  19. Mulla, D.J.: Twenty five years of remote sensing in precision agriculture: key advances and remaining knowledge gaps. Biosyst. Eng. 114, 358–371 (2013)

    Article  Google Scholar 

  20. Bhardwaj, A., Sam, L., Bhardwaj, A., Torres, F.J.M.: LiDAR remote sensing of the cryosphere: present applications and future prospects. Remote Sens. Environ. 177, 125–143 (2016)

    Article  Google Scholar 

  21. Asher, J.B., Yosef, B.B., Volinsky, R.: Ground-based remote sensing system for irrigation scheduling. Biosyst. Eng. 114, 444–453 (2013)

    Article  Google Scholar 

  22. Kumar, S., Moore, K.B.: The evolution of global positioning system (GPS) technology. J. Sci. Educ. Technol. 11(1) (2002)

    Google Scholar 

  23. Barik, R.K., Lenka, R.K., Dubey, H., Mankodiya, K.: TCloud: cloud SDI model for tourism information infrastructure management. In: Chaudhuri, S., Ray, N. (eds.) GIS Applications in the Tourism and Hospitality Industry, pp. 116–144. IGI Global, Hershey PA, USA (2018)

    Google Scholar 

  24. Boyd, D.S., Foody, G.M.: An overview of recent remote sensing and GIS based research in ecological informatics. Ecolog. Inform. 6, 25–36 (2011)

    Article  Google Scholar 

  25. Ammar, M., Russello, G., Crispo, B.: Internet of Things: a survey on the security of IoT frameworks. J. Inf. Secur. Appl. 38, 8–27 (2018)

    Google Scholar 

  26. Sahani, R., Rout, C., Badajena, J.C., Jena, A.K., Das, H.: Classification of intrusion detection using data mining techniques. In: Progress in Computing, Analytics and Networking, pp. 753–764. Springer, Singapore (2018)

    Google Scholar 

  27. Pradhan, C., Das, H., Naik, B., Dey, N.: Handbook of Research on Information Security in Biomedical Signal Processing, pp. 1–414. IGI Global, Hershey, PA (2018)

    Google Scholar 

  28. Sarkar, J.L., Panigrahi, C.R., Pati, B., Das, H.: A novel approach for real-time data management in wireless sensor networks. In: Proceedings of 3rd International Conference on Advanced Computing, Networking and Informatics, pp. 599–607. Springer, New Delhi (2016)

    Google Scholar 

  29. Hammoudi, S., Aliouat, Z., Harous, S.: Challenges and research directions for Internet of Things. Telecommun. Syst. 67(2), 367–385 (2018)

    Article  Google Scholar 

  30. Kalaivanan, K., Bhanumathi, V.: Reliable location aware and cluster-tap root based data collection protocol for large scale wireless sensor networks. J. Netw. Comput. Appl. 118, 83–101 (2018)

    Article  Google Scholar 

  31. Akkas, M.A., Sokullu, R.: An IoT-based greenhouse monitoring system with Micaz motes. Procedia Comput. Sci. 113, 603–608 (2017)

    Article  Google Scholar 

  32. Nagarajan, G., Minu, R.I.: Wireless soil monitoring sensor for sprinkler irrigation automation system. Wirel. Pers. Commun. 98(2), 1835–1851 (2018)

    Article  Google Scholar 

  33. Martinez, J.L., Claraco, J.L.B., Alonso, J.P., Ferre, A.J.C.: Distributed network for measuring climatic parameters in heterogeneous environments: application in a greenhouse. Comput. Electron. Agric. 145, 105–121 (2018)

    Article  Google Scholar 

  34. Foughali, K., Fathallah, K., Frihida, A.: Using cloud IOT for disease prevention in precision agriculture. Procedia Comput. Sci. 130, 575–582 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Bhanumathi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bhanumathi, V., Kalaivanan, K. (2019). The Role of Geospatial Technology with IoT for Precision Agriculture. In: Das, H., Barik, R., Dubey, H., Roy, D. (eds) Cloud Computing for Geospatial Big Data Analytics. Studies in Big Data, vol 49. Springer, Cham. https://doi.org/10.1007/978-3-030-03359-0_11

Download citation

Publish with us

Policies and ethics