Skip to main content

Building Concept Images of Fundamental Ideas in Statistics: The Role of Technology

  • Chapter
  • First Online:
Topics and Trends in Current Statistics Education Research

Part of the book series: ICME-13 Monographs ((ICME13Mo))

Abstract

Having a coherent mental structure for a concept is necessary for students to make sense of and use the concept in appropriate and meaningful ways. Dynamically linked documents based on TIĀ© Nspire technology can provide students with opportunities to build such mental structures by taking meaningful statistical actions, identifying the consequences, and reflecting on those consequences, with appropriate instructional guidance. The collection of carefully sequenced documents is based on research about student misconceptions and challenges in learning statistics . Initial analysis of data from preservice elementary teachers in an introductory statistics course highlights their progress in using the documents to cope with variability in a variety of contextual situations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Artigue, M. (2002). Learning mathematics in a CAS environment: The genesis of a reflection about instrumentation and the dialectics between technical and conceptual work. International Journal of Computers for Mathematical Learning, 7(3), 245ā€“274.

    ArticleĀ  Google ScholarĀ 

  • Bakker, A., Biehler, R., & Konold, C. (2005). Should young students learn about boxplots? In G. Burrill & M. Camden (Eds.), Curriculum development in statistics education: International association for statistics education 2004 roundtable (pp. 163ā€“173). Voorburg, the Netherlands: International Statistics Institute.

    Google ScholarĀ 

  • Bakker, A., & Gravemeijer, K. (2004). Learning to reason about distributions. In D. Ben-Zvi & J. Garfield (Eds.), The challenge of developing statistical literacy, reasoning and thinking (pp. 147ā€“168). Dordrecht, The Netherlands: Kluwer Academic Publishers.

    ChapterĀ  Google ScholarĀ 

  • Bakker, A., & Van Eerde, H. (2014). An introduction to design-based research with an example from statistics education. In A. Bikner-Ahsbahs, C. Knipping, & N. Presmeg (Eds.), Doing qualitative research: Methodology and methods in mathematics education (pp. 429ā€“466). New York: Springer.

    Google ScholarĀ 

  • Batanero, C. (2015). Understanding randomness: Challenges for research and teaching. In K. Kriner (Ed.), Proceedings of the ninth congress of the European Society for Research in Mathematics Education (pp. 34ā€“49).

    Google ScholarĀ 

  • Baumgartner, L. M. (2001). An update on transformational learning. In S. B. Merriam (Ed.), New directions for adult and continuing education, no. 89 (pp. 15ā€“24). San Francisco, CA: Jossey-Bass.

    ArticleĀ  Google ScholarĀ 

  • Ben-Zvi, D. (2000). Toward understanding the role of technological tools in statistical learning. Mathematical Thinking and Learning, 2(1ā€“2), 127ā€“155.

    ArticleĀ  Google ScholarĀ 

  • Ben-Zvi, D., & Arcavi, A. (2001). Junior high school studentsā€™ construction of global views of data and data representations. Educational Studies in Mathematics, 45(1ā€“3), 35ā€“65.

    ArticleĀ  Google ScholarĀ 

  • Ben-Zvi, D., & Friedlander, A. (1997). Statistical thinking in a technological environment. In J. B. Garfield & G. Burrill (Eds.), Research on the role of technology in teaching and learning statistics (pp. 45ā€“55). Voorburg, The Netherlands: International Statistical Institute.

    Google ScholarĀ 

  • Biehler, R., Ben-Zvi, D., Bakker, A., & Makar, K. (2013). Technology for enhancing statistical reasoning at the school level. In M. A. Clements, A. Bishop, C. Keitel, J. Kilpatrick & F. Leung (Eds.), Third international handbook of mathematics education (pp. 643ā€“690). Springer.

    Google ScholarĀ 

  • Building Concepts: Statistics and Probability. (2016). Texas Instruments Education Technology. http://education.ti.com/en/us/home.

  • Black, P., & Wiliam, D. (1998). Inside the black box: Raising standards through classroom assessment. Phi Delta Kappan, 80(2), 139ā€“144.

    Google ScholarĀ 

  • Breen, C. (1997). Exploring imagery in P, M and E. In E. Pehkonen (Ed.), Proceedings of the 21st PME International Conference, 2, 97ā€“104.

    Google ScholarĀ 

  • Burrill, G. (2014). Tools for learning statistics: Fundamental ideas in statistics and the role of technology. In Mit Werkzeugen Mathematik und Stochastik lernen[Using Tools for Learning Mathematics and Statistics], (pp. 153ā€“162). Springer Fachmedien Wiesbaden.

    Google ScholarĀ 

  • Chance, B., Ben-Zvi, D., Garfield, J., & Medina, E. (2007). The role of technology in improving student learning of statistics. Technology Innovations in Statistics Education, 1 (2). http://repositories.cdlib.org/uclastat/cts/tise/vol1/iss1/art2.

  • Cobb, P., McClain, K., & Gravemeijer, K. (2003). Learning about statistical covariation. Cognition and Instruction, 21(1), 1ā€“78.

    ArticleĀ  Google ScholarĀ 

  • Common Core State Standards. (2010). College and career standards for mathematics. Council of Chief State School Officers (CCSSO) and National Governorā€™s Association (NGA).

    Google ScholarĀ 

  • Cranton, P. (2002). Teaching for transformation. In J. M. Ross-Gordon (Ed.), New directions for adult and continuing education, no. 93 (pp. 63ā€“71). San Francisco, CA: Jossey-Bass.

    Google ScholarĀ 

  • delMas, R., Garfield, J., & Chance, B. (1999). A model of classroom research in action: Developing simulation activities to improve studentsā€™ statistical reasoning. Journal of Statistics Education, [Online] 7(3). (www.amstat.org/publications/jse/secure/v7n3/delmas.cfm).

  • delMas, R., & Liu, Y. (2005). Exploring studentsā€™ conceptions of the standard deviation. Statistics Education Research Journal, 4(1), 55ā€“82.

    Google ScholarĀ 

  • Dreyfus, T. (1991). On the status of visual reasoning in mathematics and mathematics education. In F. Furinghetti (Ed.), Proceedings of the 15th PME International Conference, 1, 33ā€“48.

    Google ScholarĀ 

  • Franklin, C., Kader, G., Mewborn, D., Moreno, J., Peck, R., Perry, M., et al. (2007). Guidelines for assessment and instruction in statistics education (GAISE) report: A Pre-Kā€“12 curriculum framework. Alexandria, VA: American Statistical Association.

    Google ScholarĀ 

  • Fischbein, E., Nello, M. S., & Marino, M. S. (1991). Factors affecting probabilistic judgments in children and adolescents. Educational Studies in Mathematics, 22(6), 523ā€“549.

    ArticleĀ  Google ScholarĀ 

  • Fischbein, E., & Schnarch, D. (1997). The evolution with age of probabilistic, intuitively based misconceptions. Journal for Research in Mathematics Education, 28(1), 96ā€“105.

    ArticleĀ  Google ScholarĀ 

  • Free Dictionary. http://www.thefreedictionary.com/statistical+distribution.

  • Friel, S. (1998). Teaching statistics: Whatā€™s average? In L. J. Morrow (Ed.), The teaching and learning of algorithms in school mathematics (pp. 208ā€“217). Reston, VA: National Council of Teachers of Mathematics.

    Google ScholarĀ 

  • Garfield, J., & Ben-Zvi, D. (2005). A framework for teaching and assessing reasoning about variability. Statistics Education Research Journal, 4(1), 92ā€“99.

    Google ScholarĀ 

  • Groth, R., & Bergner, J. (2006). Preservice elementary teachersā€™ conceptual and procedural knowledge of mean, median, and mode. Mathematical Thinking and Learning, 8(1), 37ā€“63.

    ArticleĀ  Google ScholarĀ 

  • Gould, R. (2011). Statistics and the modern student. Department of statistics papers. Department of Statistics, University of California Los Angeles.

    Google ScholarĀ 

  • Guin, D., & Trouche, L. (1999). The complex process of converting tools into mathematical instruments: The case of calculators. International Journal of Computers for Mathematical Learning, 3(3), 195ā€“227.

    ArticleĀ  Google ScholarĀ 

  • Hancock, C., Kaput, J., & Goldsmith, L. (1992). Authentic inquiry with data: Critical barriers to classroom implementation. Educational Psychologist, 27(3), 337ā€“364.

    ArticleĀ  Google ScholarĀ 

  • Hodgson, T. (1996). The effects of hands-on activities on studentsā€™ understanding of selected statistical concepts. In E. Jakbowski, D. Watkins & H. Biske (Eds.), Proceedings of the eighteenth annual meeting of the North American chapter of the international group for the psychology of mathematics education (pp. 241ā€“246).

    Google ScholarĀ 

  • Johnston-Wilder, P., & Pratt, D. (2007). Developing stochastic thinking. In R. Biehler, M. Meletiou, M. Ottaviani & D. Pratt (Eds.), A working group report of CERME 5 (pp. 742ā€“751).

    Google ScholarĀ 

  • Jones, G., Langrall, C., & Mooney, E. (2007). Research in probability: Responding to classroom realities. In F. K. Lester (Ed.), The second handbook of research on mathematics (pp. 909ā€“956). Reston, VA: National Council of Teachers of Mathematics (NCTM).

    Google ScholarĀ 

  • Kader, G., & Mamer, J. (2008). Contemporary curricular issues: Statistics in the middle school: Understanding center and spread. Mathematics Teaching in the Middle School, 14(1), 38ā€“43.

    Google ScholarĀ 

  • Kolb, D. (1984). Experiential learning: Experience as the source of learning and development. New Jersey: Prentice-Hall.

    Google ScholarĀ 

  • Konold, C. (1989). Informal conceptions of probability. Cognition and Instruction, 6(1), 59ā€“98.

    ArticleĀ  Google ScholarĀ 

  • Langer, E. J. (1975). The illusion of control. Journal of Personality and Social Psychology, 32(2), 311ā€“328.

    ArticleĀ  Google ScholarĀ 

  • Learning Progressions for the Common Core Standards in Mathematics: 6ā€“8 Progression probability and statistics (Draft). (2011). Common Core State Standards Writing Team.

    Google ScholarĀ 

  • Mathematics Education of Teachers II. (2012). Conference Board of the Mathematical Sciences. Providence, RI and Washington, DC: American Mathematical Society and Mathematical Association of America.

    Google ScholarĀ 

  • Mathews, D., & Clark, J. (2003). Successful studentsā€™ conceptions of mean, standard deviation and the central limit theorem. Unpublished paper.

    Google ScholarĀ 

  • Mezirow, J. (1997). Transformative learning: Theory to practice. In P. Cranton (Ed.), New directions for adult and continuing education, no. 74. (pp. 5ā€“12). San Francisco, CA: Jossey-Bass.

    ArticleĀ  Google ScholarĀ 

  • Mezirow, J. (2000). Learning to think like an adult: Core concepts of transformation theory. In J. Mezirow & Associates (Eds.), Learning as transformation: Critical perspectives on a theory in progress (pp. 3ā€“34). San Francisco, CA: Jossey-Bass.

    Google ScholarĀ 

  • Michael, J., & Modell, H. (2003). Active learning in secondary and college science classrooms: A working model of helping the learner to learn. Mahwah, NJ: Erlbaum.

    Google ScholarĀ 

  • Mokros, J., & Russell, S. (1995). Childrenā€™s concepts of average and representativeness. Journal for Research in Mathematics Education, 26(1), 20ā€“39.

    ArticleĀ  Google ScholarĀ 

  • National Research Council. (1999). In J. Bransford, A. Brown & R. Cocking (Eds.), How people learn: Brain, mind, experience, and school. Washington, DC: National Academy Press.

    Google ScholarĀ 

  • Oehrtman, M. (2008). Layers of abstraction: Theory and design for the instruction of limit concepts. In M. Carlson & C. Rasmussen (Eds.), Making the connection: Research and teaching in undergraduate mathematics education (pp. 1ā€“21).

    Google ScholarĀ 

  • Peirce, C. S. (1932). In C. Hartshorne & P. Weiss (Eds.), Collected papers of Charles Sanders Peirce 1931ā€“1958. Cambridge, MA: Harvard University Press.

    Google ScholarĀ 

  • Peirce, C. S. (1998). The essential Peirce: Selected philosophical writings, Vol. 2 (1893ā€“1913). The Peirce Edition Project. Bloomington, Indiana: Indiana University Press.

    Google ScholarĀ 

  • Piaget, J. (1970). Structuralism, (C. Maschler, Trans.). New York: Basic Books, Inc.

    Google ScholarĀ 

  • Piaget, J. (1985). The equilibration of cognitive structures (T. Brown & K. J. Thampy, Trans.). Chicago: The University of Chicago Press.

    Google ScholarĀ 

  • Posner, G., Strike, K., Hewson, P., & Gertzog, W. (1982). Accommodation of a scientific conception: Toward a theory of conceptual change. Science Education, 66(2), 211ā€“227.

    ArticleĀ  Google ScholarĀ 

  • Presmeg, N. C. (1994). The role of visually mediated processes in classroom mathematics. Zentralblatt fĆ¼r Didaktik der Mathematik: International Reviews on Mathematics Education, 26(4), 114ā€“117.

    Google ScholarĀ 

  • Sacristan, A., Calder, N., Rojano, T., Santos-Trigo, M., Friedlander, A., & Meissner, H. (2010). The influence and shaping of digital technologies on the learningā€” and learning trajectoriesā€”of mathematical concepts. In C. Hoyles & J. Lagrange (Eds.), Mathematics education and technologyā€”Rethinking the mathematics education and technologyā€”Rethinking the terrain: The 17th ICMI Study (pp. 179ā€“226). New York, NY: Springer.

    Google ScholarĀ 

  • Shaughnessy, J., Watson, J., Moritz, J., & Reading, C. (1999). School mathematics studentsā€™ acknowledgement of statistical variation. In C. Maher (Chair), Thereā€™s more to life than centers. Presession Research Symposium, 77th Annual National Council of Teachers of Mathematics Conference, San Francisco, CA.

    Google ScholarĀ 

  • Tall, D., & Vinner, S. (1981). Concept image and concept definition in mathematics with particular reference to limits and continuity. Educational Studies in Mathematics, 12(2), 151ā€“169.

    ArticleĀ  Google ScholarĀ 

  • Taylor, E. W. (2007). An update of transformative learning theory: A critical review of the empirical research (1999ā€“2005). International Journal of Lifelong Education, 26(2), 173ā€“191.

    ArticleĀ  Google ScholarĀ 

  • Thompson, P. (2002). Didactic objects and didactic models in radical constructivism. In K. Gravemeijer, R. Lehrer, B. V. Oers & L. Verschaffel (Eds.), Symbolizing, modeling and tool use in mathematics education (pp. 191ā€“212). Dordrecht, The Netherlands: Kluwer Academic Publishers.

    ChapterĀ  Google ScholarĀ 

  • Watson, J., & Fitzallen, N. (2016). Statistical software and mathematics education: Affordances for learning. In L. D. English & D. Kirshner (Eds.), Handbook of international research in mathematics education (3rd ed., pp. 563ā€“594). New York, NY: Routledge.

    Google ScholarĀ 

  • Watson, J., & Moritz, J. (2000). Developing concepts of sampling. Journal for Research in Mathematics Education, 31(1), 44ā€“70.

    ArticleĀ  Google ScholarĀ 

  • Wild, C. (2006). The concept of distribution. Statistics Education Research Journal, 5(2), 10ā€“26. http://www.stat.auckland.ac.nz/serj.

  • Zehavi, N., & Mann, G. (2003). Task design in a CAS environment: Introducing (in)equations. In J. Fey, A. Couco, C. Kieran, L. McCullin, & R. Zbiek (Eds.), Computer algebra systems in secondary school mathematics education (pp. 173ā€“191). Reston, VA: National Council of Teachers of Mathematics.

    Google ScholarĀ 

  • Zull, J. (2002). The art of changing the brain: Enriching the practice of teaching by exploring the biology of learning. Alexandria VA: Association for Supervision and Curriculum Development.

    Google ScholarĀ 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gail Burrill .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Burrill, G. (2019). Building Concept Images of Fundamental Ideas in Statistics: The Role of Technology. In: Burrill, G., Ben-Zvi, D. (eds) Topics and Trends in Current Statistics Education Research. ICME-13 Monographs. Springer, Cham. https://doi.org/10.1007/978-3-030-03472-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-03472-6_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-03471-9

  • Online ISBN: 978-3-030-03472-6

  • eBook Packages: EducationEducation (R0)

Publish with us

Policies and ethics