Skip to main content

Beam-Domain Full-Duplex Massive MIMO Transmission in the Cellular System

  • Chapter
  • First Online:
5G Enabled Secure Wireless Networks
  • 1218 Accesses

Abstract

Co-time co-frequency uplink and downlink (CCUD) transmission was considered challenging in the cellular system due to the strong self-interference (SI) between the transmitter and receiver of base station (BS). In this chapter, by investigating the beam-domain representation of channels based on the basis expansion model, we propose a beam-domain full-duplex (BDFD) massive multiple-input multiple-output (MIMO) scheme to make the CCUD transmission possible. The key idea of the BDFD scheme lies in intelligently scheduling the uplink and downlink user equipments (UEs) based on the beam-domain distributions of their associated channels to mitigate SI and enhance transmission efficiency. We show that the BDFD scheme achieves significant saving in uplink/downlink training resource and achieves the uplink and downlink sum capacities simultaneously as the number of BS antennas approaches to infinity. The superiority of the BDFD scheme over the traditional time-division duplex/frequency-division duplex massive MIMO is evaluated through simulation for the macro-cell environment. The results show that the spectral efficiency gain can even exceed in the specific scenarios, since the BDFD scheme utilizes the time-frequency resource more efficiently in both training and data transmission phases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We mention that there exists another choice of shared antenna configuration which uses a single antenna array for transmission and reception. However, under the current technologies, the shared configuration is still difficult in the multi-antenna system due to the significant cross talk between different antennas [20]. Therefore, it will not be considered in this chapter.

  2. 2.

    To simplify the notation, we assume the symmetric antenna deployment at the BS. Extension to the situation with different numbers of transmit and receive antennas is straightforward.

  3. 3.

    Note that the idea of beam-domain channel was also studied in [9] for FDD massive MIMO system. However, we investigate the beam-domain properties of a more general channel model and present new capacity achieving scheme using these properties.

  4. 4.

    Since the DOA/DOD information is slow time-varying, we assume that these parameters can be obtained perfectly at the BS through the long-term estimation [27].

  5. 5.

    Herein, the uplink and downlink sum capacities indicate the maximum achievable rates of standard MIMO multiple access channel (MAC) and MIMO broadcasting (BC) channels, respectively [30].

  6. 6.

    In (III-B) and (III-B), the terms of IGIs and SI are not exactly equal to zero for the general N. So we keep these terms in the equations.

  7. 7.

    The SEs of BDFD scheme and FD massive MIMO with linear transceiver are defined as the sum of achievable rates of all uplink and downlink UEs. The SEs of TDD/FDD massive MIMO are defined in the same way but penalized by a factor of 1/2 due to the orthogonal uplink/downlink resource allocation.

References

  1. T.L. Marzetta, Noncooperative cellular wireless with unlimited numbers of BS antennas. IEEE Trans. Wirel. Commun. 9(11), 3590–3600 (2010)

    Article  Google Scholar 

  2. H.Q. Ngo, E.G. Larsson, T.L. Marzetta, Energy and spectral efficiency of very large multiuser MIMO systems. IEEE Trans. Commun. 61(4), 1436–1449 (2013)

    Article  Google Scholar 

  3. J. Hoydis, S. Brink, M. Debbah, Massive MIMO in UL/DL of cellular networks: how many antennas do we need? IEEE J. Sel. Areas Commun. 31(2), 160–171 (2013)

    Article  Google Scholar 

  4. J. Zhang, C.K. Wen, S. Jin, X. Gao, K. Wong, On capacity of large-scale MIMO multiple access channels with distributed sets of correlated antennas. IEEE J. Sel. Areas Commun. 31(2), 133–148 (2013)

    Article  Google Scholar 

  5. H. Cui, L. Song, B. Jiao, Multi-pair two-way amplify-and-forward relaying with very large number of relay antennas. IEEE Trans. Wirel. Commun. 13(5), 2636–2645 (2014)

    Article  Google Scholar 

  6. L. You, X. Gao, X.G. Xia, N. Ma, Y. Peng, Pilot reuse for massive MIMO transmission over spatially correlated rayleigh fading channels. IEEE Trans. Wirel. Commun. 14(6), 3352–3366 (2015)

    Article  Google Scholar 

  7. S. Jin, X. Liang, K.K. Wong, X. Gao, Q. Zhu, Ergodic rate analysis for multipair massive MIMO two-way relay networks. IEEE Trans. Wirel. Commun. 14(3), 1480–1491 (2015)

    Article  Google Scholar 

  8. A. Adhikary, J. Nam, J.-Y. Ahn, G. Caire, Joint spatial division and multiplexing: the large-scale array regime. IEEE Trans. Inf. Theory 59(10), 6441–6463 (2013)

    Article  MathSciNet  Google Scholar 

  9. C. Sun, X. Gao, S. Jin, M. Matthaiou, Z. Ding, C. Xiao, Beam division multiple access transmission for massive MIMO communications. IEEE Trans. Commun. 63(6), 2170–2184 (2015)

    Article  Google Scholar 

  10. A. Liu, V. Lau, Phase only RF precoding for massive MIMO systems with limited RF chains. IEEE Trans. Signal Process. 62(17), 4505–4515 (2014)

    Article  MathSciNet  Google Scholar 

  11. D. Kim, G. Lee, Y. Sung, Two-stage beamformer design for massive MIMO downlink by trace quotient formulation. IEEE Trans. Commun. 63(6), 2200–2211 (2015)

    Article  Google Scholar 

  12. Y. Jang, K. Min, S. Park, S. Choi, Spatial resource utilization to maximize uplink spectral efficiency in full-duplex massive MIMO. In Proc. IEEE Int. Conf. Commun., London, UK, 2015, pp. 1583–1588

    Google Scholar 

  13. Y. Li, P. Fan, L. Anatolii, L. Liu, On the spectral and energy efficiency of full-duplex small cell wireless systems with massive MIMO. IEEE Trans. Veh. Technol. 66(3), 2339–2353 (2017)

    Article  Google Scholar 

  14. H. Tabassum, A.H. Sakr, E. Hossain, Massive MIMO-enabled wireless backhauls for full-duplex small cells. In Proc. IEEE Global Commun. Conf., San Diego, 2015, pp. 1–6

    Google Scholar 

  15. R. Mai, D.H.N. Nguyen, T. Le-Ngoc, Joint MSE-based hybrid precoder and equalizer design for full-duplex massive MIMO systems. In Proc. IEEE Int. Conf. Commun., Kuala Lumpur, Malaysia, 2016, pp. 1–6

    Google Scholar 

  16. B. Li, D. Zhu, P. Liang, Small cell in-band wireless backhaul in massive MIMO systems: a cooperation of next-generation techniques. IEEE Trans. Wirel. Commun. 14(12), 7057–7069 (2015)

    Article  Google Scholar 

  17. A. Sabharwal, P. Schniter, D. Guo, D.W. Bliss, S. Rangarajan, R. Wichman, In-band full-duplex wireless: challenges and opportunities. IEEE J. Sel. Areas Commun. 32(9), 1637–1652 (2014)

    Article  Google Scholar 

  18. H.Q. Ngo, H.A. Suraweera, M. Matthaiou, E.G. Larsson, Multipair full-duplex relaying with massive arrays and linear processing. IEEE J. Sel. Areas Commun. 32(9), 1721–1737 (2014)

    Article  Google Scholar 

  19. G. Zheng, Joint beamforming optimization and power control for full duplex MIMO two-way relay channel. IEEE Trans. Signal Process. 63(3), 555–566 (2015)

    Article  MathSciNet  Google Scholar 

  20. D. Bharadia, E. McMilin, S. Katti, Full duplex radios. In Proc ACM Sigcomm, Hong Kong, China, Aug. 2013, pp. 375–386

    Google Scholar 

  21. 3GPP, Universal mobile telecommunications system (UMTS); spatial channel model for multiple input multiple output (MIMO) simulations. In v.12.0.0, Tech. Rep. TR 25.996, Jun. 2012. [Online]. Available: www.3gpp.org

  22. K.I. Pedersen, P.E. Mogensen, B.H. Fleury, A stochastic model of the temporal and azimuthal dispersion seen at the base station in outdoor propagation environments. IEEE Trans. Veh. Technol. 49(2), 437–447 (2000)

    Article  Google Scholar 

  23. G.B. Giannakis, C. Tepedelenlioglu, Basis expansion models and diversity techniques for blind identification and equalization of time-varying channels. Proc. IEEE 86(10), 1969–1986 (1998)

    Article  Google Scholar 

  24. S. Goyal, P. Liu, S.S. Panwar, R.A. Difazio, R. Yang, E. Bala, Full duplex cellular systems: will doubling interference prevent doubling capacity? IEEE Commun. Mag. 53(5), 121–127 (2015)

    Article  Google Scholar 

  25. E. Everett, A. Sahai, aA. Sabharwal, Passive self-interference suppression for full-duplex infrastructure nodes. IEEE Trans. Wirel. Commun. 13(2), 680–694 (2014)

    Article  Google Scholar 

  26. J. Singh, S. Ramakrishna, On the feasibility of codebook-based beamforming in millimeter wave systems with multiple antenna arrays. IEEE Trans. Wirel. Commun. 14(5), 2670–2683 (2015)

    Article  Google Scholar 

  27. Z.M. Liu, Y.Y. Zhou, A unified framework and sparse Bayesian perspective for direction-of-arrival estimation in the presence of array imperfections. IEEE Trans. Signal Process. 61(15), 3786–3798 (2013)

    Article  MathSciNet  Google Scholar 

  28. J.C. Shen, J. Zhang, E. Alsusa, K.B. Letaief, Compressed CSI acquisition in FDD massive MIMO with partial support information. In Proc. IEEE Int. Conf. Commun., London, UK, Jun. 2015, pp. 1459–1464

    Google Scholar 

  29. J.O. Smith, Spectral Audio Signal Processing, W3, 2011. [Online]. Available: http://books.w3k.org/

  30. S. Vishwanath, N. Jindal, A. Goldsmith, Duality, achievable rates, and sum-rate capacity of Gaussian MIMO broadcast channels. IEEE Trans. Inf. Theory 49(10), 2658–2668 (2003)

    Article  MathSciNet  Google Scholar 

  31. A. Barg, D.Y. Nogin, Bounds on packings of spheres in the Grassmann manifold. IEEE Trans. Inf. Theory 48(9), 2450–2454 (2002)

    Article  MathSciNet  Google Scholar 

  32. S.M. Kay, Fundamentals of Statistical Signal Processing: Estimation Theory (Prentice-Hall, Englewood Cliffs, 1993)

    MATH  Google Scholar 

  33. G. Caire, N. Jindal, M. Kobayashi, N. Ravindran, Multiuser MIMO achievable rates with downlink training and channel state feedback. IEEE Trans. Inf. Theory 56(6), 2845–2866 (2010)

    Article  MathSciNet  Google Scholar 

  34. D. Nguyen, L.-N. Tran, P. Pirinen, M. Latva-aho, Precoding for full duplex multiuser MIMO systems: Spectral and energy efficiency maximization. IEEE Trans. Signal Process. 61(16), 4038–4050 (2013)

    Article  MathSciNet  Google Scholar 

  35. B. Hassibi, B.M. Hochwald, How much training is needed in multiple antenna wireless links? IEEE Trans. Inf. Theory 49(4), 951–963 (2003)

    Article  Google Scholar 

  36. 3GPP, Further enhancements to LTE time division duplex (TDD) for downlink-uplink (DL-UL) interference management and traffic adaptation. In v.11.0.0, Tech. Rep. 36.828, Jun. 2012. [Online]. Available: www.3gpp.org

  37. H.A. Suraweera, I. Krikidis, G. Zheng, C. Yuen, P.J. Smith, Low complexity end-to-end performance optimization in MIMO full-duplex relay systems. IEEE Trans. Wirel. Commun. 13(2), 913–927 (2014)

    Article  Google Scholar 

  38. X. Xia, D. Zhang, K. Xu, W. Ma, Y. Xu, Hardware impairments aware transceiver for full-duplex massive MIMO relaying. IEEE Trans. Signal Process. 63(24), 6565–6580 (2015)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgment

This work was supported in part by National Natural Science Foundation of China under Grant 61671472 and in part by Jiangsu Province Natural Science Foundation under Grant BK20160079.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Appendix

Appendix

As in [6], we assume that the number of channel paths is very large within the DOA/DOD regions. As a result, we can assume that the uplink/downlink channel is Gaussian distributed from the law of large numbers, i.e., \( {\mathbf{h}}_{g_{u,k}}\sim \mathcal{CN}\left(0,{\mathbf{C}}_{g_{u,k}}\right) \) and \( {\mathbf{h}}_{g_{d,k}}\sim \mathcal{CN}\left(0,{\mathbf{C}}_{g_{d,k}}\right) \). According to (1) and (2), the correlation matrices can be expressed as

$$ \kern0em {\mathbf{C}}_{g_{u,k}}=\mathbb{E}\left[{\mathbf{h}}_{g_{u,k}}{\mathbf{h}}_{g_{u,k}}^H\right]=\sum \limits_{i=1}^{M_u}{\int}_{\theta_{g_{u,k},i}^{\mathrm{min}}}^{\theta_{g_{u,k},i}^{\mathrm{max}}}\mathbf{a}\left(\theta \right){\mathbf{a}}^H\left(\theta \right){S}_{g_{u,k},i}\left(\theta \right) d\theta $$
$$ {\mathbf{C}}_{g_{d,k}}=\mathbb{E}\left[{\mathbf{h}}_{g_{d,k}}{\mathbf{h}}_{g_{d,k}}^H\right]=\sum \limits_{i=1}^{M_d}{\int}_{\theta_{g_{d,k},i}^{\mathrm{min}}}^{\theta_{g_{d,k},i}^{\mathrm{max}}}\mathbf{a}\left(\theta \right){\mathbf{a}}^H\left(\theta \right){S}_{g_{d,k},i}\left(\theta \right) d\theta $$
(41)

Based on the above assumption, we have \( {\tilde{\mathbf{h}}}_{g_{u,k}}^{\left\{{B}_{g_u^{\prime }},:\right\}}\sim \mathcal{CN}\left(0,{\tilde{\mathbf{C}}}_{g_{u,k}}^{g_u^{\prime }}\right) \) and \( {\tilde{\mathbf{h}}}_{g_{d,k}}^{\left\{{B}_{g_d^{\prime },:}\right\}}\sim \mathcal{CN}\left(0,{\tilde{\mathbf{C}}}_{g_{d,k}}^{g_d^{\prime }}\right) \), where \( {\tilde{\mathbf{C}}}_{g_{u,k}}^{g_u^{\prime }}={\left({\mathbf{F}}^{\left\{:,{B}_{g_u^{\prime }}\right\}}\right)}^H{\mathbf{C}}_{g_{u,k}}{\mathbf{F}}^{\left\{:,{B}_{g_u^{\prime }}\right\}} \) and \( {\tilde{\mathbf{C}}}_{g_{d,k}}^{g_d^{\prime }}={\left({\mathbf{F}}^{\left\{:,{B}_{g_d^{\prime }}\right\}}\right)}^H{\mathbf{C}}_{g_{d,k}}{\mathbf{F}}^{\left\{:,{B}_{g_d^{\prime }}\right\}} \). With this and the standard result for LMMSE estimator [32, Ch. 12], the LMMSE estimates for uplink and downlink channels have distributions \( {\tilde{\mathbf{h}}}_{g_{u,k},\mathrm{LM}}^{\left\{{B}_{g_u},:\right\}}\sim \mathcal{CN}\left(0,{\tilde{\mathbf{C}}}_{g_{u,k},\mathrm{LM}}^{g_u}\right) \) and \( {\tilde{\mathbf{h}}}_{g_{d,k},\mathrm{LM}}^{\left\{{B}_{g_d},:\right\}}\sim CN\left(0,{\tilde{\mathbf{C}}}_{g_{d,k},\mathrm{LM}}^{g_d}\right) \), where the correlation matrices can be expressed as

$$ {\displaystyle \begin{array}{c}{\tilde{\mathbf{C}}}_{g_{u,k},\mathrm{LM}}^{g_u}={\tilde{\mathbf{C}}}_{g_{u,k}}^{g_u}\left(\frac{\sigma }{\tau_u{p}_u}{\mathbf{I}}_{b_u}+\sum \limits_{g_u^{\prime}\in {G}_u}{\tilde{\mathbf{C}}}_{g_{u,k}^{\prime}}^{g_u}\right.+\sum \limits_{g_d^{\prime },{g}_d^{{\prime\prime}}\in {G}_d}\sum \limits_{i=1}^{M_{SI}}\underset{\theta_{R,i}^{\mathrm{min}}}{\overset{\theta_{R,i}^{\mathrm{max}}}{\int }}\underset{\theta_{T,i}^{\mathrm{min}}}{\overset{\theta_{T,i}^{\mathrm{max}}}{\int }}{\mathbf{G}}_{\theta_R,{\theta}_T}^{\left\{{B}_{u,g},{B}_{d,{g}^{\prime }}\right\}}\\ {}{\left.\times {\Psi}_k{\left({\mathbf{G}}_{\theta_R,{\theta}_T}^{\left\{{B}_{u,g},{B}_{d,{g}^{{\prime\prime} }}\right\}}\right)}^H{S}_{SI,i}\left({\theta}_R,{\theta}_T\right)d{\theta}_Rd{\theta}_T\right)}^{-1}{\tilde{\mathbf{C}}}_{g_{u,k}}^{g_u}\end{array}} $$
$$ {\displaystyle \begin{array}{c}{\tilde{\mathbf{C}}}_{g_{d,k},\mathrm{LM}}^{g_d}=\sum \limits_{g_d^{\prime}\in {G}_d}\sum \limits_{i=1}^{M_d}\underset{\theta_{g_{d,k},i}^{\mathrm{min}}}{\overset{\theta_{g_{d,k},i}^{\mathrm{max}}}{\int }}{\left({\mathbf{F}}^{\left\{:,{B}_{g_d}\right\}}\right)}^H\mathbf{a}\left(\theta \right){\mathbf{a}}^H\left(\theta \right){\mathbf{F}}^{\left\{:,{B}_{g_d^{\prime }}\right\}}{S}_{g_{d,k},i}\left(\theta \right) d\theta \\ {}\times \left(\sum \limits_{g^{\prime },{g}^{{\prime\prime}}\in {G}_d}\sum \limits_{i=1}^{M_d}\underset{\theta_{g_{d,k},i}^{\mathrm{min}}}{\overset{\theta_{g_{d,k},i}^{\mathrm{max}}}{\int }}{\left({\mathbf{F}}^{\left\{:,{B}_{g_d^{\prime }}\right\}}\right)}^H\right.{\left.\mathbf{a}\left(\theta \right){\mathbf{a}}^H\left(\theta \right){\mathbf{F}}^{\left\{:,{B}_{g_d^{{\prime\prime} }}\right\}}{S}_{g_{d,k},i}\left(\theta \right) d\theta {+}\frac{\sigma }{\tau_d{p}_d}{\mathbf{I}}_{b_d}\right)}^{-1}\\ {}\times \sum \limits_{g_d^{\prime}\in {G}_d}\sum \limits_{i=1}^{M_d}\underset{\theta_{g_{d,k},i}^{\mathrm{min}}}{\overset{\theta_{g_{d,k},i}^{\mathrm{max}}}{\int }}{\left({\mathbf{F}}^{\left\{:,{B}_{g_d^{\prime }}\right\}}\right)}^H\mathbf{a}\left(\theta \right){\mathbf{a}}^H\left(\theta \right){\mathbf{F}}^{\left\{:,{B}_{g_d}\right\}}{S}_{g_{d,k},i}\left(\theta \right) d\theta \end{array}} $$
(42)

Moreover, as N → ∞, we have [3]

$$ \frac{1}{N}{\left({\tilde{\mathbf{h}}}_{g_{u,k},\mathrm{LM}}^{\left\{{B}_{g_u},:\right\}}\right)}^H{\tilde{\mathbf{h}}}_{g_{u,k},\mathrm{LM}}^{\left\{{B}_{g_u},:\right\}}=\frac{1}{N}\mathrm{tr}\left({\tilde{\mathbf{C}}}_{g_{u,k},\mathrm{LM}}^{g_u}\right) $$
$$ \frac{1}{N}{\left({\tilde{\mathbf{h}}}_{g_{d,k},\mathrm{LM}}^{\left\{{B}_{g_d},:\right\}}\right)}^H{\tilde{\mathbf{h}}}_{g_{d,k},\mathrm{LM}}^{\left\{{B}_{g_d},:\right\}}=\frac{1}{N}\mathrm{tr}\left({\tilde{\mathbf{C}}}_{g_{d,k},\mathrm{LM}}^{g_d}\right) $$
(43)

With (41), (42), and (43), the scaling behaviors for average powers of useful signal, channel estimation, IUI, and IGI can be readily obtained by using the technique in [38, Proof of Theorem 4] as shown in (44) at the bottom of the page. Then we focus on the scaling behavior of SI power. According to Table 3, the asymptotic result in (43) and the property tr(AB) = tr(BA), we can rewrite the average SI power as

$$ {\begin{aligned}&\mathbb{E}\left[{\mathrm{SI}}_{g_{u,k}}\right]={\left(\mathrm{tr}\left({\tilde{\mathbf{C}}}_{g_{u,k},\mathrm{LM}}^{g_u}\right)\right)}^{-2}\sum \limits_{g_d^{\prime}\in {G}_d}\sum \limits_{k^{\prime }=1}^{K_{g_d}}{p}_{g_{d,{k}^{\prime}}^{\prime }}{\left(\mathrm{tr}\left({\tilde{\mathbf{C}}}_{g_{d,{k}^{\prime}}^{\prime },\mathrm{LM}}^{g_d^{\prime }}\right)\right)}^{-1}\\ &{\times}\underset{X_{g_{u,k},{g}_{d,k}^{\prime }}}{\underbrace{\mathrm{tr}\!\left(\!{\mathbb{E}}\!\left[{\tilde{\mathbf{h}}}_{g_{u,k},\mathrm{LM}}^{\left\{{B}_{g_u},:\right\}}{\left({\tilde{\mathbf{h}}}_{g_{u,k},\mathrm{LM}}^{\left\{{B}_{g_u},:\right\}}\right)}^H\!{\tilde{\mathbf{H}}}_{SI}^{\left\{{B}_{g_u},{B}_{g_d^{\prime }}\right\}}{\tilde{\mathbf{h}}}_{g_{d,{k}^{\prime}}^{\prime },\mathrm{LM}}^{\left\{{B}_{g_d^{\prime }},:\right\}}{\left({\tilde{\mathbf{h}}}_{g_{d,{k}^{\prime}}^{\prime },\mathrm{LM}}^{\left\{{B}_{g_d^{\prime }},:\right\}}\right)}^H{\left({\tilde{\mathbf{H}}}_{SI}^{\left\{{B}_{g_u},{B}_{g_d^{\prime }}\right\}}\right)}^H\right]\right)}}\end{aligned}} $$
(44)

The expression of \( {X}_{g_{u,k},{g}_{d,k}^{\prime }} \) can be rewritten as

$$ {\displaystyle \begin{array}{c}{X}_{g_{u,k},{g}_{d,k}^{\prime }}=\mathrm{tr}\left(\mathbb{E}\left[{\tilde{\mathbf{C}}}_{g_{u,k},\mathrm{LM}}^{g_u}{\tilde{\mathbf{H}}}_{SI}^{\left\{{B}_{g_u},{B}_{g_d^{\prime }}\right\}}{\tilde{\mathbf{C}}}_{g_{d,{k}^{\prime }},\mathrm{LM}}^{g_d}{\left({\tilde{\mathbf{H}}}_{SI}^{\left\{{B}_{g_u},{B}_{g_d^{\prime }}\right\}}\right)}^H\right]\right)\\ {}\le \mathrm{tr}\left(\mathbb{E}\left[{\tilde{\mathbf{C}}}_{g_{u,k}}^{g_u}{\tilde{\mathbf{H}}}_{SI}^{\left\{{B}_{g_u},{B}_{g_d^{\prime }}\right\}}{\tilde{\mathbf{C}}}_{g_{d,{k}^{\prime}}}^{g_d}{\left({\tilde{\mathbf{H}}}_{SI}^{\left\{{B}_{g_u},{B}_{g_d^{\prime }}\right\}}\right)}^H\right]\right)\\ {}=\mathrm{tr}\left(\kern0em {\tilde{\mathbf{C}}}_{g_{u,k}}^{g_u}\kern0em \sum \limits_{i=1}^{M_{SI}}\kern0em \underset{\theta_{R,i}^{\mathrm{min}}}{\overset{\theta_{R,i}^{\mathrm{max}}}{\int }}\kern0em \underset{\theta_{T,i}^{\mathrm{min}}}{\overset{\theta_{T,i}^{\mathrm{max}}}{\int }}\kern0em {S}_{SI,i}\left({\theta}_R,{\theta}_T\right){\left({\mathbf{F}}^{\left\{:,{B}_{g_u}\right\}}\right)}^H\kern0em \mathbf{a}\left({\theta}_R\right){\mathbf{a}}^H\left({\theta}_T\right)\right.\\ {}\kern0.75em \left.\times {\mathbf{F}}^{\left\{:,{B}_{d,g}\right\}}{\tilde{\mathbf{C}}}_{g_{d,{k}^{\prime}}^{\prime}}^{g_d^{\prime }}{\left({\mathbf{F}}^{\left\{:,{B}_{g_d^{\prime }}\right\}}\right)}^H\mathbf{a}\left({\theta}_T\right){\mathbf{a}}^H\left({\theta}_R\right){\mathbf{F}}^{\left\{:,{B}_{g_u}\right\}}d{\theta}_Rd{\theta}_T\right)\\ {}\le {I}_R\times {I}_T\underset{\theta_R\in \underset{i=1}{\overset{M_{SI}}{\cup }}\left[{\theta}_{R,i}^{\mathrm{min}},{\theta}_{R,i}^{\mathrm{max}}\right],{\theta}_T\in \underset{i=1}{\overset{M_{SI}}{\cup }}\left[{\theta}_{T,i}^{\mathrm{min}},{\theta}_{T,i}^{\mathrm{max}}\right]}{\max }{S}_{SI,i}\left({\theta}_R,{\theta}_T\right)\end{array}} $$
(45)

where

$$ {I}_R=\underset{\theta_R\in \underset{i=1}{\overset{M_{SI}}{\cup }}\left[{\theta}_{R,i}^{\mathrm{min}},{\theta}_{R,i}^{\mathrm{max}}\right]}{\int}\kern0em {\mathbf{a}}^H\left({\theta}_R\right){\mathbf{F}}^{\left\{:,{B}_{g_u}\right\}}{\tilde{\mathbf{C}}}_{g_{u,k}}^{g_u}{\left({\mathbf{F}}^{\left\{:,{B}_{g_u}\right\}}\right)}^H\mathbf{a}\left({\theta}_R\right)d{\theta}_R $$
$$ {I}_T=\underset{\theta_T\in \underset{i=1}{\overset{M_{SI}}{\cup }}\left[{\theta}_{T,i}^{\mathrm{min}},{\theta}_{T,i}^{\mathrm{max}}\right]}{\int}\kern0em {\mathbf{a}}^H\left({\theta}_T\right){\mathbf{F}}^{\left\{:,{B}_{g_d^{\prime }}\right\}}{\tilde{\mathbf{C}}}_{g_{d^{\prime },{k}^{\prime}}}^{g_d^{\prime }}{\left({\mathbf{F}}^{\left\{:,{B}_{g_d^{\prime }}\right\}}\right)}^H\mathbf{a}\left({\theta}_T\right)d{\theta}_T $$
(46)

In (45), the first step is based on the independence between \( {\tilde{\mathbf{h}}}_{g_{u,k},\mathrm{LM}}^{\left\{{B}_{g_u},:\right\}} \), \( {\tilde{\mathbf{h}}}_{g_{d,k}^{\prime },\mathrm{LM}}^{\left\{{B}_{g_d^{\prime }},:\right\}} \), and \( {\tilde{\mathbf{H}}}_{SI}^{\left\{{B}_{g_u},{B}_{g_d^{\prime }}\right\}} \). The second step is based on the relation \( {\tilde{\mathbf{C}}}_{g_{m,k},\mathrm{LM}}^{g_m}={\tilde{\mathbf{C}}}_{g_{m,k}}^{g_m}-\left({\tilde{\mathbf{C}}}_{g_{m,k}}^{g_m}-{\tilde{\mathbf{C}}}_{g_{m,k},\mathrm{LM}}^{g_m}\right) \)(m ∈ {u, d}) and the positive definiteness of \( {\tilde{\mathbf{C}}}_{g_{m,k}}^{g_m} \) and \( {\tilde{\mathbf{C}}}_{g_{m,k}}^{g_m}-{\tilde{\mathbf{C}}}_{g_{m,k},\mathrm{LM}}^{g_m} \). The third step is obtained by using the equation \( {\tilde{\mathbf{H}}}_{SI}^{\left\{{B}_{g_u},{B}_{g_d^{\prime }}\right\}}={\left({\mathbf{F}}^{\left\{:,{B}_{g_u}\right\}}\right)}^H{\mathbf{H}}_{SI}{\mathbf{F}}^{\left\{:,{B}_{g_d^{\prime }}\right\}} \) and the SI channel model (3).

By substituting (41) into (46), the integral I R can be rewritten as

$$ {\displaystyle \begin{array}{c}\frac{1}{N}{I}_R=\frac{1}{N}\sum \limits_{i=1}^{M_u}\underset{\theta_{g_{u,k},i}^{\mathrm{min}}}{\overset{\theta_{g_{u,k},i}^{\mathrm{max}}}{\int }}{S}_{g_{u,k},i}\left(\theta \right)\underset{\theta_R\in \underset{i=1}{\overset{M_{SI}}{\cup }}\left[{\theta}_{R,i}^{\mathrm{min}},{\theta}_{R,i}^{\mathrm{max}}\right]}{\int }{\mathbf{a}}^H\left({\theta}_R\right)\mathbf{a}\left(\theta \right){\mathbf{a}}^H\left(\theta \right)\mathbf{a}\left({\theta}_R\right)d{\theta}_R d\theta \\ {}=N\sum \limits_{i=1}^{M_u}\underset{\theta_{g_{u,k},i}^{\mathrm{min}}}{\overset{\theta_{g_{u,k},i}^{\mathrm{max}}}{\int }}{S}_{g_{u,k},i}\left(\theta \right)\underset{\theta_R\in \underset{i=1}{\overset{M_{SI}}{\cup }}\left[{\theta}_{R,i}^{\mathrm{min}},{\theta}_{R,i}^{\mathrm{max}}\right]}{\int }{\mathrm{asinc}}_N^2\left(\frac{d}{\lambda}\sin {\theta}_R-\frac{d}{\lambda}\sin \theta \right)d{\theta}_R d\theta \end{array}} $$
(47)

Note that according to Lemma 1 and Lemma 2, we have \( {\cap}_{i=1}^{M_u}\left[{\theta}_{g_{u,k},i}^{\mathrm{min}},{\theta}_{g_{u,k},i}^{\mathrm{max}}\right]\cap {\cap}_{i=1}^{M_{SI}}\left[{\theta}_{R,i}^{\mathrm{min}},{\theta}_{R,i}^{\mathrm{max}}\right]=\varnothing \) or \( {\cap}_{i=1}^{M_d}\left[{\theta}_{g_{d,k},i}^{\mathrm{min}},{\theta}_{g_{d,k},i}^{\mathrm{max}}\right]\cap {\cap}_{i=1}^{M_{SI}}\left[{\theta}_{T,i}^{\mathrm{min}},{\theta}_{T,i}^{\mathrm{max}}\right]=\varnothing \), otherwise, Criterion 2 will be violated. If \( {\cap}_{i=1}^{M_u}\left[{\theta}_{g_{u,k},i}^{\mathrm{min}},{\theta}_{g_{u,k},i}^{\mathrm{max}}\right]\cap {\cap}_{i=1}^{M_{SI}}\left[{\theta}_{R,i}^{\mathrm{min}},{\theta}_{R,i}^{\mathrm{max}}\right]=\varnothing \), with a same procedure as that in the proof of Lemma 1, we can obtain \( \frac{1}{N}{I}_R<\mathcal{O}(1) \) or \( {I}_R<\mathcal{O}(N) \) as N → ∞; otherwise, \( {I}_R=\mathcal{O}(N) \). In the same way, we can prove that \( {I}_T<\mathcal{O}(N) \) if \( {\cap}_{i=1}^{M_d}\left[{\theta}_{g_{d,k},i}^{\mathrm{min}},{\theta}_{g_{d,k},i}^{\mathrm{max}}\right]\cap {\cap}_{i=1}^{M_{SI}}\left[{\theta}_{T,i}^{\mathrm{min}},{\theta}_{T,i}^{\mathrm{max}}\right]=\varnothing \), and \( {I}_T=\mathcal{O}(N) \) otherwise. Combining the results in the above, we have \( {I}_R\times {I}_T<\mathcal{O}\left({N}^2\right) \). Moreover, it has been shown in [38] that \( \mathrm{tr}\left({\tilde{\mathbf{C}}}_{g_{u,k},\mathrm{LM}}^{g_u}\right) \) and \( \mathrm{tr}\left({\tilde{\mathbf{C}}}_{g_{d^{\prime },{k}^{\prime }},\mathrm{LM}}^{g_d^{\prime }}\right) \) scale with \( \mathcal{O}(N) \) as N → ∞. Using these results on (44), we have \( \mathbb{E}\left[{\mathrm{SI}}_{g_{u,k}}\right]<\mathcal{O}\left({N}^{-1}\right) \), which is exactly the result in Table 3.

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Xu, K., Xia, X., Wang, Y., Xie, W., Zhang, D. (2019). Beam-Domain Full-Duplex Massive MIMO Transmission in the Cellular System. In: Jayakody, D., Srinivasan, K., Sharma, V. (eds) 5G Enabled Secure Wireless Networks . Springer, Cham. https://doi.org/10.1007/978-3-030-03508-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-03508-2_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-03507-5

  • Online ISBN: 978-3-030-03508-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics