Skip to main content

Graphical Enumeration

  • Chapter
  • First Online:
Graphs in Perturbation Theory

Part of the book series: Springer Theses ((Springer Theses))

  • 560 Accesses

Abstract

In this chapter, we will motivate our analysis of graph generating functions in detail using zero-dimensional quantum field theory. The content of this chapter is partially based on the author’s article (Borinsky, Ann Phys 385:95–135 (2017) [1]).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Part of this chapter is reprinted from Annals of Physics, 385, Michael Borinsky, Renormalized asymptotic enumeration of Feynman diagrams, 95–135, Copyright 2017, with permission from Elsevier.

  2. 2.

    A ‘model’ in this context is a choice for \(\mathcal {S}\).

References

  1. Borinsky M (2017) Renormalized asymptotic enumeration of Feynman diagrams. Ann Phys 385:95–135

    Article  ADS  MathSciNet  Google Scholar 

  2. Hurst CA (1952) The enumeration of graphs in the Feynman-Dyson technique. In: Proceedings of the royal society of london a: mathematical, physical and engineering sciences, vol 214. The Royal Society, pp 44–61 214

    Google Scholar 

  3. Bender CM, Wu TT (1976) Statistical analysis of feynman diagrams. Phys Rev Lett 37(3):117–120

    Article  ADS  MathSciNet  Google Scholar 

  4. Cvitanovic P, Lautrup B, Pearson RB (1978) Number and weights of Feynman diagrams. Phys Rev D 18(6):1939–1949

    Article  ADS  Google Scholar 

  5. Bessis D, Itzykson C, Zuber J-B (1980) Quantum field theory techniques in graphical enumeration. Adv Appl Math 1(2):109–157

    Article  MathSciNet  Google Scholar 

  6. Argyres EN (2001) Zero-dimensional field theory. Eur Phys J C-Part Fields 19(3):567–582

    Article  ADS  MathSciNet  Google Scholar 

  7. Kontsevich M (1992) Intersection theory on the moduli space of curves and the matrix Airy function. Commun Math Phys 147(1):1–23

    Article  ADS  MathSciNet  Google Scholar 

  8. Lando SK, Zvonkin AK (2013) Graphs on surfaces and their applications, vol 141. Springer Science & Business Media

    Google Scholar 

  9. Itzykson C, Zuber J-B (2005) Quantum field theory. Courier Dover Publications

    Google Scholar 

  10. Albert R, arabási AL (2002) Statistical mechanics of complex networks. Rev Mod Phys 74(1):47–97

    Article  ADS  MathSciNet  Google Scholar 

  11. Cherman A, Dorigoni D, Ünsal M (2015) Decoding perturbation theory using resurgence: Stokes phenomena, new saddle points and Lefschetz thimbles. J High Energy Phys 2015(10):56

    Google Scholar 

  12. Penner RC (1988) Perturbative series and the moduli space of Riemann surfaces. J Differ Geom 27(1):35–53

    Article  MathSciNet  Google Scholar 

  13. Whittaker ET, Watson GN (1996) A course of modern analysis. Cambridge University Press, Cambridge

    Google Scholar 

  14. Flajolet P, Sedgewick R (2009) Analytic combinatorics. Cambridge University Press, Cambridge

    Google Scholar 

  15. Eynard B, Orantin N (2007) Invariants of algebraic curves and topological expansion. Commun Number Theory Phys 1(2):347–452

    Article  MathSciNet  Google Scholar 

  16. Lipatov LN (1977) Divergence of the perturbation theory series and the quasiclassical theory. Sov Phys JETP 45(2):216–223

    Google Scholar 

  17. Berry MV, Howls CJ (1991) Hyperasymptotics for integrals with saddles. In: Proceedings of the royal society of london a: mathematical, physical and engineering sciences, vol 434. The Royal Society, pp 657–675

    Google Scholar 

  18. Dingle RB (1973) Asymptotic expansions: their derivation and interpretation, vol 48. Academic Press London

    Google Scholar 

  19. Basar G, Dunne GV (2013) Resurgence theory, ghost-instantons, and analytic continuation of path integrals. J High Energy Phys 2013(10)

    Google Scholar 

  20. Écalle J (1981) Les fonctions résurgentes. In: Publ. math. d’Orsay/Univ. de Paris, Dep. de math

    Google Scholar 

  21. Paris RB (1992) Smoothing of the stokes phenomenon using Mellin-Barnes integrals. J Comput Appl Math 41(1–2):117–133

    Article  MathSciNet  Google Scholar 

  22. Banderier C, Drmota M (2015) Formulae and asymptotics for coefficients of algebraic functions. Comb Probab Comput 24(01):1–53

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Borinsky .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Borinsky, M. (2018). Graphical Enumeration. In: Graphs in Perturbation Theory. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-030-03541-9_3

Download citation

Publish with us

Policies and ethics