Skip to main content

Abstract

Explains the detailed procedure of creating artificial antibodies using Molecular Imprinted Polymers (MIPs). A novel sensing technique for the recognition of CTx-I by combining electrochemical impedance spectroscopy and MIP technology is also explained in this chapter. Moreover, the role of the coating thickness on the sensitivity of the planar interdigital sensors is investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bolisay LD, Culver JN, Kofinas P (2006) Molecularly imprinted polymers for tobacco mosaic virus recognition. Biomaterials 27(22):4165–4168

    Article  Google Scholar 

  2. Trotta F, Drioli E, Baggiani C, Lacopo D (2002) Molecular imprinted polymeric membrane for naringin recognition. J Membr Sci 201(1):77–84

    Article  Google Scholar 

  3. Odabaşi M, Say R, Denizli A (2007) Molecular imprinted particles for lysozyme purification. Mater Sci Eng C 27(1):90–99

    Article  Google Scholar 

  4. Huo H, Su H, Tan T (2009) Adsorption of Ag+ by a surface molecular-imprinted biosorbent. Chem Eng J 150(1):139–144

    Article  Google Scholar 

  5. Sellergren B (1994) Direct drug determination by selective sample enrichment on an imprinted polymer. Anal Chem 66(9):1578–1582

    Article  Google Scholar 

  6. Ye L, Haupt K (2004) Molecularly imprinted polymers as antibody and receptor mimics for assays, sensors and drug discovery. Anal Bioanal Chem 378(8):1887–1897

    Article  Google Scholar 

  7. Vlatakis G, Andersson LI, Müller R, Mosbach K (1993) Drug assay using antibody mimics made by molecular imprinting. Nature 361(6413):645

    Article  Google Scholar 

  8. Takeuchi T, Mukawa T, Matsui J, Higashi M, Shimizu KD (2001) Molecularly imprinted polymers with metalloporphyrin-based molecular recognition sites coassembled with methacrylic acid. Anal Chem 73(16):3869–3874

    Article  Google Scholar 

  9. Vallano PT, Remcho VT (2000) Affinity screening by packed capillary high-performance liquid chromatography using molecular imprinted sorbents: I. Demonstration of feasibility. J Chromatogr A 888(1):23–34

    Article  Google Scholar 

  10. Li Y, Ma Q, Liu Z, Wang X, Su X (2014) A novel enzyme-mimic nanosensor based on quantum dot-Au nanoparticle@ silica mesoporous microsphere for the detection of glucose. Anal Chim Acta 840:68–74

    Article  Google Scholar 

  11. Ersöz A, Gavalas VG, Bachas LG (2002) Potentiometric behavior of electrodes based on overoxidized polypyrrole films. Anal Bioanal Chem 372(7–8):786–790

    Article  Google Scholar 

  12. Hedborg E, Winquist F, Lundström I, Andersson LI, Mosbach K (1993) Some studies of molecularly-imprinted polymer membranes in combination with field-effect devices. Sens Actuators A 37:796–799

    Article  Google Scholar 

  13. áL Panasyuk T, áM Sergeeva L (1999) Conductimetric sensor for atrazine detection based on molecularly imprinted polymer membranes. Analyst 124(3):331–334

    Article  Google Scholar 

  14. Malitesta C, Losito I, Zambonin PG (1999) Molecularly imprinted electrosynthesized polymers: new materials for biomimetic sensors. Anal Chem 71(7):1366–1370

    Article  Google Scholar 

  15. Andrea P, Stanislav M (2001) A solid binding matrix/molecularly imprinted polymer-based sensor system for the determination of clenbuterol in bovine liver using differential-pulse voltammetry. Sens Actuators B Chem 76(1):286–294

    Article  Google Scholar 

  16. Cheng Z, Wang E, Yang X (2001) Capacitive detection of glucose using molecularly imprinted polymers. Biosens Bioelectron 16(3):179–185

    Article  Google Scholar 

  17. Yin J, Yang G, Chen Y (2005) Rapid and efficient chiral separation of nateglinide and its l-enantiomer on monolithic molecularly imprinted polymers. J Chromatogr A 1090(1):68–75

    Article  Google Scholar 

  18. Yan H, Row KH (2006) Characteristic and synthetic approach of molecularly imprinted polymer. Int J Mol Sci 7(5):155–178

    Article  Google Scholar 

  19. Owens PK, Karlsson L, Lutz E, Andersson LI (1999) Molecular imprinting for bio-and pharmaceutical analysis. TrAC Trends Anal Chem 18(3):146–154

    Article  Google Scholar 

  20. Kempe M, Mosbach K (1995) Receptor binding mimetics: a novel molecularly imprinted polymer. Tetrahedron Lett 36(20):3563–3566

    Article  Google Scholar 

  21. Rimmer S (1998) Synthesis of molecular imprinted polymer networks. Chromatographia 47(7–8):470–474

    Article  Google Scholar 

  22. Zia AI, Mukhopadhyay SC, Yu P-L, Al-Bahadly I, Gooneratne CP, Kosel J (2015) Rapid and molecular selective electrochemical sensing of phthalates in aqueous solution. Biosens Bioelectron 67:342–349

    Article  Google Scholar 

  23. Hirayama K, Sakai Y, Kameoka K, Noda K, Naganawa R (2002) Preparation of a sensor device with specific recognition sites for acetaldehyde by molecular imprinting technique. Sens Actuators B Chem 86(1):20–25

    Article  Google Scholar 

  24. Dickert F, Lieberzeit P, Tortschanoff M (2000) Molecular imprints as artificial antibodies—a new generation of chemical sensors. Sens Actuators B Chem 65(1):186–189

    Article  Google Scholar 

  25. Sharma PS, D’Souza F, Kutner W (2012) Molecular imprinting for selective chemical sensing of hazardous compounds and drugs of abuse. TrAC Trends Anal Chem 34:59–77

    Article  Google Scholar 

  26. Chianella I, Lotierzo M, Piletsky SA, Tothill IE, Chen B, Karim K, Turner AP (2002) Rational design of a polymer specific for microcystin-LR using a computational approach. Anal Chem 74(6):1288–1293

    Article  Google Scholar 

  27. Ye L, Mosbach K (2001) Molecularly imprinted microspheres as antibody binding mimics. React Funct Polym 48(1):149–157

    Article  Google Scholar 

  28. Lavignac N, Allender CJ, Brain KR (2004) Current status of molecularly imprinted polymers as alternatives to antibodies in sorbent assays. Anal Chim Acta 510(2):139–145

    Article  Google Scholar 

  29. Liu F, Liu X, Ng S-C, Chan HS-O (2006) Enantioselective molecular imprinting polymer coated QCM for the recognition of l-tryptophan. Sens Actuators B Chem 113(1):234–240

    Article  Google Scholar 

  30. Spégel P, Schweitz L, Nilsson S (2003) Molecularly imprinted polymers in capillary electrochromatography: recent developments and future trends. Electrophoresis 24(22–23):3892–3899

    Article  Google Scholar 

  31. Ul-Haq N, Park JK (2008) Optical resolution of phenylalanine using D-Phe-imprinted poly (acrylic acid-co-acrylonitrile) membrane—racemate solution concentration effect. Polym Compos 29(9):1006–1013

    Article  Google Scholar 

  32. Ellwanger A, Berggren C, Bayoudh S, Crecenzi C, Karlsson L, Owens PK, Ensing K, Cormack P, Sherrington D, Sellergren B (2001) Evaluation of methods aimed at complete removal of template from molecularly imprinted polymers. Analyst 126(6):784–792

    Article  Google Scholar 

  33. Khan H, Park JK (2006) The preparation of D-phenylalanine imprinted microbeads by a novel method of modified suspension polymerization. Biotechnol Bioprocess Eng 11(6):503–509

    Article  Google Scholar 

  34. Hart BR, Rush DJ, Shea KJ (2000) Discrimination between enantiomers of structurally related molecules: separation of benzodiazepines by molecularly imprinted polymers. J Am Chem Soc 122(3):460–465

    Article  Google Scholar 

  35. Kugimiya A, Matsui J, Takeuchi T, Yano K, Muguruma H, Elgersma A, Karube I (1995) Recognition of sialic acid using molecularly imprinted polymer. Polym Plast Technol Eng 28(13):2317–2323

    Article  Google Scholar 

  36. Sarhan A, Wulff G (1982) On polymers with enzyme-analogous structure. 14. Stereospecific binding by amide bonding or electrostatic interaction. Makromol Chem Macromol Chem Phys 183(7):1603–1614

    Google Scholar 

  37. Andersson LI (2000) Molecular imprinting: developments and applications in the analytical chemistry field. J Chromatogr B Biomed Sci Appl 745(1):3–13

    Article  MathSciNet  Google Scholar 

  38. Svenson J, Karlsson JG, Nicholls IA (2004) 1H nuclear magnetic resonance study of the molecular imprinting of (−)-nicotine: template self-association, a molecular basis for cooperative ligand binding. J Chromatogr A 1024(1):39–44

    Article  Google Scholar 

  39. Spivak DA (2005) Optimization, evaluation, and characterization of molecularly imprinted polymers. Adv Drug Deliv Rev 57(12):1779–1794

    Article  Google Scholar 

  40. Ekberg B, Mosbach K (1989) Molecular imprinting: a technique for producing specific separation materials. Trends Biotechnol 7(4):92–96

    Article  Google Scholar 

  41. Sellergren B (1989) Molecular imprinting by noncovalent interactions. Enantioselectivity and binding capacity of polymers prepared under conditions favoring the formation of template complexes. Die Makromol Chem 190(11):2703–2711

    Google Scholar 

  42. Kim H, Spivak DA (2003) New insight into modeling non-covalently imprinted polymers. J Am Chem Soc 125(37):11269–11275

    Article  Google Scholar 

  43. Esfandyari-Manesh M, Javanbakht M, Atyabi F, Badiei A, Dinarvand R (2011) Effect of porogenic solvent on the morphology, recognition and release properties of carbamazepine-molecularly imprinted polymer nanospheres. J Appl Polym Sci 121(2):1118–1126

    Article  Google Scholar 

  44. Wulff G, Sarhan A, Zabrocki K (1973) Enzyme-analogue built polymers and their use for the resolution of racemates. Tetrahedron Lett 14(44):4329–4332

    Article  Google Scholar 

  45. Li P, Rong F, Yuan C (2003) Morphologies and binding characteristics of molecularly imprinted polymers prepared by precipitation polymerization. Polym Int 52(12):1799–1806

    Article  Google Scholar 

  46. Wang J, Cormack PA, Sherrington DC, Khoshdel E (2003) Monodisperse, molecularly imprinted polymer microspheres prepared by precipitation polymerization for affinity separation applications. Angew Chem Int Ed 42(43):5336–5338

    Article  Google Scholar 

  47. Mayes AG, Mosbach K (1996) Molecularly imprinted polymer beads: suspension polymerization using a liquid perfluorocarbon as the dispersing phase. Anal Chem 68(21):3769–3774

    Article  Google Scholar 

  48. Shen X, Zhou T, Ye L (2012) Molecular imprinting of protein in pickering emulsion. Chem Commun 48(66):8198–8200

    Article  Google Scholar 

  49. Noh MW, Lee DC (1999) Synthesis and characterization of PS-clay nanocomposite by emulsion polymerization. Polym Bull 42(5):619–626

    Article  Google Scholar 

  50. Ersöz A, Denizli A, Özcan A, Say R (2005) Molecularly imprinted ligand-exchange recognition assay of glucose by quartz crystal microbalance. Biosens Bioelectron 20(11):2197–2202

    Article  Google Scholar 

  51. Wang C, Javadi A, Ghaffari M, Gong S (2010) A pH-sensitive molecularly imprinted nanospheres/hydrogel composite as a coating for implantable biosensors. Biomaterials 31(18):4944–4951

    Article  Google Scholar 

  52. Mamishev AV, Sundara-Rajan K, Fumin Y, Yanqing D, Zahn M (2004) Interdigital sensors and transducers. Proc IEEE 92(5):808–845. https://doi.org/10.1109/JPROC.2004.826603

    Article  Google Scholar 

  53. Coan T, Barroso GS, Motz G, Bolzán A, Machado RAF (2013) Preparation of PMMA/hBN composite coatings for metal surface protection. Mater Res 16(6):1366–1372

    Article  Google Scholar 

  54. Wang H-C, Zyuzin A, Mamishev AV (2014) Measurement of coating thickness and loading using concentric fringing electric field sensors. IEEE Sens J 14(1):68–78

    Article  Google Scholar 

  55. Azmi A, Azman AA, Kaman KK, Ibrahim S, Mukhopadhyay SC, Nawawi SW, Yunus MAM (2017) Performance of coating materials on planar electromagnetic sensing array to detect water contamination. IEEE Sens J 17(16):5244–5251

    Article  Google Scholar 

  56. Snoeijer J, Ziegler J, Andreotti B, Fermigier M, Eggers J (2008) Thick films of viscous fluid coating a plate withdrawn from a liquid reservoir. Phys Rev Lett 100(24):244502

    Article  Google Scholar 

  57. Krishnan S, Weinman CJ, Ober CK (2008) Advances in polymers for anti-biofouling surfaces. J Mater Chem 18(29):3405–3413

    Article  Google Scholar 

  58. Nel AE, Mädler L, Velegol D, Xia T, Hoek EM, Somasundaran P, Klaessig F, Castranova V, Thompson M (2009) Understanding biophysicochemical interactions at the nano–bio interface. Nat Mater 8(7):543–557

    Article  Google Scholar 

  59. Yola ML, Eren T, Atar N (2015) A sensitive molecular imprinted electrochemical sensor based on gold nanoparticles decorated graphene oxide: application to selective determination of tyrosine in milk. Sens Actuators B Chem 210:149–157

    Article  Google Scholar 

  60. Aghaei A, Hosseini MRM, Najafi M (2010) A novel capacitive biosensor for cholesterol assay that uses an electropolymerized molecularly imprinted polymer. Electrochim Acta 55(5):1503–1508

    Article  Google Scholar 

  61. Viswanathan S, Rani C, Ribeiro S, Delerue-Matos C (2012) Molecular imprinted nanoelectrodes for ultra sensitive detection of ovarian cancer marker. Biosens Bioelectron 33(1):179–183

    Article  Google Scholar 

  62. Nebi M, Peker D (2016) Effect of heat treatment on the structural properties of TiO2 films produced by sol-gel spin coating technique. In: Journal of physics: conference series, vol 1. IOP Publishing, UK, p 012026

    Google Scholar 

  63. Ilican S (2016) Structural, optical and electrical properties of erbium-doped ZnO thin films prepared by spin coating method. J Nanoelectronics Optoelectron 11(4):465–471

    Article  Google Scholar 

  64. Wong M, Ishige R, White KL, Li P, Kim D, Krishnamoorti R, Gunther R, Higuchi T, Jinnai H, Takahara A (2014) Large-scale self-assembled zirconium phosphate smectic layers via a simple spray-coating process. Nat Commun 5:3589

    Article  Google Scholar 

  65. Guo Y, Li W, Yu H, Perepichka DF, Meng H (2017) Flexible asymmetric supercapacitors via spray coating of a new electrochromic donor–acceptor polymer. Adv Energy Mater 7(2):1601623

    Article  Google Scholar 

  66. Grosso D (2011) How to exploit the full potential of the dip-coating process to better control film formation. J Mater Chem 21(43):17033–17038

    Article  Google Scholar 

  67. Chaki SH, Deshpande M, Tailor JP (2014) Characterization of CuS nanocrystalline thin films synthesized by chemical bath deposition and dip coating techniques. Thin Solid Films 550:291–297

    Article  Google Scholar 

  68. Ashiri R, Nemati A, Ghamsari MS (2014) Crack-free nanostructured BaTiO3 thin films prepared by sol–gel dip-coating technique. Ceram Int 40(6):8613–8619

    Article  Google Scholar 

  69. Zhang X, Ye H, Xiao B, Yan L, Lv H, Jiang B (2010) Sol–gel preparation of PDMS/Silica hybrid antireflective coatings with controlled thickness and durable antireflective performance. J Phys Chem C 114(47):19979–19983

    Article  Google Scholar 

  70. Alexander C, Andersson HS, Andersson LI, Ansell RJ, Kirsch N, Nicholls IA, O’Mahony J, Whitcombe MJ (2006) Molecular imprinting science and technology: a survey of the literature for the years up to and including 2003. J Mol Recognit 19(2):106–180

    Article  Google Scholar 

  71. Bossi A, Bonini F, Turner A, Piletsky S (2007) Molecularly imprinted polymers for the recognition of proteins: the state of the art. Biosens Bioelectron 22(6):1131–1137

    Article  Google Scholar 

  72. Díaz-Díaz G, Antuña-Jiménez D, Carmen Blanco-López M, Jesús Lobo-Castañón M, Miranda-Ordieres AJ, Tuñón-Blanco P (2012) New materials for analytical biomimetic assays based on affinity and catalytic receptors prepared by molecular imprinting. TrAC Trends Anal Chem 33:68–80

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nasrin Afsarimanesh .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Afsarimanesh, N., Mukhopadhyay, S.C., Kruger, M. (2019). MIP-Based Sensor for CTx-I Detection. In: Electrochemical Biosensor: Point-of-Care for Early Detection of Bone Loss. Smart Sensors, Measurement and Instrumentation, vol 30. Springer, Cham. https://doi.org/10.1007/978-3-030-03706-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-03706-2_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-03705-5

  • Online ISBN: 978-3-030-03706-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics