Skip to main content

Part of the book series: Healthy Ageing and Longevity ((HAL,volume 8))

Abstract

Copper is an essential micronutrient for life. It is require by a wide range of species, from bacteria to yeast, plants and mammals including humans. To prevent the consequences of the deficit or excess of copper, living organisms have developed cellular mechanisms that regulate the uptake, efflux, storage and use of the metal. Several diseases are consequences of defects in such biological systems. Copper intake is reduce in elderly people, in some cases leading to two mayor problems for the human health . As co-factor of several antioxidant enzymes, reduction in the concentration of this metal directly affect the protective activity of these proteins, decreasing the capacity of the organism to counteract the oxidative stress damage, affecting the inflammatory/immune response and affecting the functioning of the central nervous system functioning through its participation as neurotransmitter and the ubiquitin proteasome system . Chronic copper toxicity is rare and primarily affects the liver. Wilson’s disease and Indian childhood cirrhosis are examples of severe chronic liver disease that results from the genetic predisposition to the hepatic accumulation of copper. By the other hand, Alzheimer and Parkinson disease are examples of neurodegenerative disorder that may course with an alteration in copper metabolism . Finally, it had been developed new technology in order to study the role of copper on the ageing, highlighting advances in the field of system biology and transcriptomic.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams R, Murray F (1974) Minerals: kill or cure?. Larchmont Books, NY

    Google Scholar 

  • Andersson K, Olofsson A, Nielsen EH, Svehag SE, Lundgren E (2002) Only amyloidogenic intermediates of transthyretin induce apoptosis. Biochem Biophys Res Commun 294:309–314

    Article  CAS  PubMed  Google Scholar 

  • Araya M, Gutiérrez R, Arredondo M (2014) CCS mRNA transcripts and serum CCS protein as copper marker in adults suffering inflammatory processes. Biometals. https://doi.org/10.1007/s10534-014-9737-4

    Article  CAS  PubMed  Google Scholar 

  • Araya M, Núñez H, Pavez L, Arredondo M, Méndez M, Cisternas F, Pizarro F, Sierralta W, Uauy R, González M (2012) Administration of high doses of copper to capuchin monkeys does not cause liver damage but induces transcriptional activation of hepatic proliferative responses. J Nutr 142(2):233–237

    Article  CAS  PubMed  Google Scholar 

  • AREDS (Age-Related Eye Disease Study Research Group) (2001) A randomized, placebo-controlled, clinical trial of high-dose supplementation with vitamins C and E, beta carotene, and zinc for age-related macular degeneration and vision loss: AREDS report no. 8. Arch Ophthalmol 119:1417–1436

    Article  Google Scholar 

  • Armstrong JS, Leong W, Lees GJ (2001) Comparative effects of metal chelating agents on the neuronal cytotoxicity induced by copper (Cu2+), iron (Fe3+) and zinc in the hippocampus. Brain Res 8992:51–62

    Article  Google Scholar 

  • Arnold S (2012) Cytochrome c oxidase and its role in neurodegeneration and neuroprotection. Adv Exp Med Biol 748:305–339

    Article  CAS  PubMed  Google Scholar 

  • Arredondo M, Weisstaub G, medina M, Suazo M, Guzmán M, Araya M. (2014) Assessing chaperone for Zn, Cu-superoxide dismutase as an indicator of copper deficiency in malnourished children. J Trace Elem Med Biol 28:23–27

    Article  CAS  PubMed  Google Scholar 

  • Astiz M, Hurtado de Catalfo GE, de Alaniz MJ, Marra CA (2009) Involvement of lipids in dimethoate-induced inhibition of testosterone biosynthesis in rat interstitial cells. Lipids 44(8):703–718

    Article  CAS  PubMed  Google Scholar 

  • Babu U, Failla ML (1990) Respiratory burst and candidacidal activity of peritoneal macrophages are impaired in copper-deficient rats. J Nutr 120(12):1692–1699

    Article  CAS  PubMed  Google Scholar 

  • Bala S, Failla ML (1992) Copper deficiency reversibly impairs DNA synthesis in activated T lymphocytes by limiting interleukin 2 activity. Proc Natl Acad Sci USA 89(15):6794–6797

    Article  CAS  Google Scholar 

  • Barceloux D (1999) Copper. Clin Toxicol 37(2):217–230

    CAS  Google Scholar 

  • Bartee MY, Lutsenko S (2007) Hepatic copper-transporting ATPase ATP7B: function and inactivation at the molecular and cellular level. Biometals 20(3–4):627–637

    Article  CAS  PubMed  Google Scholar 

  • Beshgetoor D, Hambidge M (1998) Clinical conditions altering copper metabolism in humans. Am J Clin Nutr 67(5 Suppl):1017S–1021S

    Article  CAS  PubMed  Google Scholar 

  • Bingham MJ, Ong TJ, Summer KH, Middleton RB, McArdle HJ (1998) Physiologic function of the Wilson disease gene product, ATP7B. Am J Clin Nutr 67(5 Suppl):982S–987S

    Article  CAS  PubMed  Google Scholar 

  • Botta G, Turn CS, Quintyne NJ, Kirchman PA (2011 Oct) Increased iron supplied through Fet3p results in replicative life span extension of Saccharomyces cerevisiae under conditions requiring respiratory metabolism. Exp Gerontol 46(10):827–832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brewer GJ, Fink JK, Hedera P (1999) Diagnosis and treatment of Wilson’s disease. Semin Neurol 19(3):261–270

    Article  CAS  PubMed  Google Scholar 

  • Brewer GJ (2010) Risk of copper and iron toxicity during aging in humans. Chem Res Toxicol 23:319–326

    Article  CAS  PubMed  Google Scholar 

  • Buckley WT (1996) Application of compartmental modeling to determination of trace element requirements in humans. J Nutr 126:2312S–2319S

    Article  CAS  PubMed  Google Scholar 

  • Cartwright GE, Wintrobe MM (1964) Copper metabolism in normal subjects. Am J Clin Nutr 14:224–232

    Article  CAS  PubMed  Google Scholar 

  • Cerpa W, Varela-Nallar L, Reyes AE, Minniti AN, Inestrosa NC (2005) Is there a role for copper in neurodegenerative disease? Mol Aspects Med 26:405–420

    Article  CAS  PubMed  Google Scholar 

  • Chew EY (2013) Nutrition effects on ocular diseases in the aging eye. Invest Ophthalmol Vis Sci 54(14):ORSF42–47

    Article  CAS  Google Scholar 

  • Crouch PJ, Hung LW, Adlard PA, Cortes M, Lal V, Filiz G, Perez KA, Nurjono M, Caragounis A, Du T et al (2009) Increasing Cu bioavailability inhibits Abeta oligomers and tau phosphorylation. Proc Natl Acad Sci USA 106:381–386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dameron CT, Harrison MD (1998) Mechanisms for protection against copper toxicity. Am J Clin Nutr 67(5 Suppl):1091S–1097S

    Article  CAS  PubMed  Google Scholar 

  • De Magalhães JP, Curado J, Church GM (2009) Meta-analysis of age-related gene expression profiles identifies common signatures of aging. Bioinformatics 25(7):875–881

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • De Romaña DL, Olivares M, Uauy R, Araya M (2011) Risks and benefits of copper in light of new insights of copper homeostasis. J Trace Elem Med Biol 25(1):3–13

    Article  PubMed  CAS  Google Scholar 

  • Delmi M, Rapin CH, Bengoa JM, Delmas PD, Vasey H, Bonjour JP (1990) Dietary supplementation in elderly patients with fractured neck of the femur. Lancet 335:1013–1016

    Article  CAS  PubMed  Google Scholar 

  • Dijkstra M, Vonk RJ, Kuipers F (1996) How does copper get into bile? new insights into the mechanism(s) of hepatobiliary copper transport. J Hepatol 24:109–120

    Article  CAS  PubMed  Google Scholar 

  • Ding WQ, Lind SE (2009) Metal ionophores—an emerging class of anticancer drugs. IUBMB Life 61(11):1013–1018

    Article  CAS  PubMed  Google Scholar 

  • Enesco HE, Wolanskyj A, Sawada M (1989) Effect of copper on lifespan and lipid peroxidation in rotifers. Age 12(1):19–23

    Article  CAS  Google Scholar 

  • Ferrer I (2009) Early involvement of the cerebral cortex in Parkinson’s disease convergence of multiple metabolic defects. Prog Neurobiol 88:89–103

    Article  CAS  PubMed  Google Scholar 

  • Friedman DS, O’Colmain BJ, Muñoz B, Tomany SC, McCarty C, de Jong PT, Nemesure B, Mitchell P, Kempen J, Eye Diseases Prevalence Research Group (2004) Prevalence of age related macular degeneration in the United States. Arch Ophthalmol 122:564–572

    Google Scholar 

  • Gaetke LM, Chow CK (2003) Copper toxicity, oxidative stress, and antioxidant nutrients. Toxicology 189:147–163

    Article  CAS  PubMed  Google Scholar 

  • Giampaolo V, Luigina F, Conforti A, Milanino R (1982) Copper and inflammation. In: Sorenson JR (ed) Inflammatory diseases and copper: the metabolic and therapeutic roles of copper and other essential metalloelements in humans. Humana Press, Clifton, New Jersey

    Chapter  Google Scholar 

  • González M, Reyes-Jara A, Suazo M, Jo WJ, Vulpe C (2008) Expression of copper-related genes in response to copper load. Am J Clin Nutr 88(3):830S–834S

    Article  PubMed  Google Scholar 

  • Gorell JM, Peterson EL, Rybicki BA, Johnson CC (2004) Multiple risk factors for Parkinson’s disease. J Neurol Sci 217:169–174

    Article  PubMed  Google Scholar 

  • Gulec S, Collins JF (2014) Molecular mediators governing iron-copper interactions. Annu Rev Nutr 34:95–116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harada H, Kurauchi M, Hayashi R, Eki T (2007) Shortened lifespan of nematode Caenorhabditis elegans after prolonged exposure to heavy metals and detergents. Ecotoxicol Environ Saf 66:378–383

    Article  CAS  PubMed  Google Scholar 

  • Harris ZL, Gitlin JD (1996) Genetic and molecular basis for copper toxicity. Am J Clin Nutr 63:836S–841S

    Article  CAS  PubMed  Google Scholar 

  • Heresi G, Castillo-Duran C, Munoz C, Arevalo M, Schlesinger L (1985) Phagocytosis and immunoglobulin levels in hypocupremic infants. Nutr Res 5:1327–1334

    Article  Google Scholar 

  • Hooijmans CR, Kiliaan AJ (2008) Fatty acids, lipid metabolism and Alzheimer pathology. Eur J Pharmacol 585:176–196

    Article  CAS  PubMed  Google Scholar 

  • Huang J, Gan Q, Han L, et al (2008) SIRT1 overexpression antagonizes cellular senescence with activated ERK/S6k1 signaling in human diploid fibroblasts. PLoSONE 3(3):e1710

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hung LW, Barnham KJ (2012) Modulating metals as a therapeutic strategy for Alzheimer’s disease. Future Med Chem 4(8):955–969

    Article  CAS  PubMed  Google Scholar 

  • Johnson WT, Newman SM Jr (2003) Copper deficiency: a potential model for determining the role of mitochondria in cardiac aging. J Am Aging Assoc 26(1–2):19–28

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jung Y, Surh Y (2001) Oxidative DNA damage and cytotoxicity induced by copper-stimulated redox cycling of salsolinol, a neurotoxic tetrahydroisoquinoline alkaloid. Free Radic Biol Med 30(12):1407–1417

    Article  CAS  PubMed  Google Scholar 

  • Kardos J, Kovács I, Hajós F, Kálmán M, Simonyi M (1989) Nerve endings from rat brain tissue release copper upon depolarization. A possible role in regulating neuronal excitability. Neurosci Lett 103:139–144

    Article  CAS  PubMed  Google Scholar 

  • Kirchman PA, Botta G (2007) Copper supplementation increases yeast life span under conditions requiring respiratory metabolism. Mech Ageing Dev 128:187–195

    Article  CAS  PubMed  Google Scholar 

  • Klang IM, Schilling B, Sorensen DJ, Sahu AK, Kapahi P, Andersen JK, Swoboda P, Killilea DW4 Gibson BW, Lithgow GJ (2014) Iron promotes protein insolubility and aging in C. elegans. Aging (Albany NY) 6(11):975–991

    Google Scholar 

  • Koefoed-Johnsen V, Ussing HH (1958) The nature of the frog skin potential. Acta Physiol Scand 42:298–308

    Article  CAS  PubMed  Google Scholar 

  • Kong GK, Miles LA, Crespi GA, Morton CJ, Ng HL, Barnham KJ, McKinstry WJ, Cappai R, Parker MW (2008) Copper binding to the Alzheimer’s disease amyloid precursor protein. Eur Biophys J 37:269–279

    Article  CAS  PubMed  Google Scholar 

  • Kozlowski H, Janicka-Klos A, Brasun J, Gaggelli E, Valesnsin D, Valensin G (2009) Copper, iron, and zinc homesotasis and their role in neurodegenerative disorders (metal uptake, transport, distribution and regulation). Coord Chem Rev 253:2665–2685

    Article  CAS  Google Scholar 

  • Krajacic P, Qian Y, Hahn P, Dentchev T, Lukinova N, Dunaief JL (2006) Retinal localization and copper-dependent relocalization of the Wilson and Menkes disease proteins. Inves Ophthalmol Vis Sci 47:3129–3134

    Article  Google Scholar 

  • Kremer JM, Bigaouette J (1996) Nutrient intake of patients with rheumatoid arthritis is deficient in pyridoxine, zinc, copper, and magnesium. J Rheumatol 23(6):990–994

    CAS  PubMed  Google Scholar 

  • La Fontaine S, Mercer JF (2007) Trafficking of the copper-ATPases, ATP7A and ATP7B: role in copper homeostasis. Arch Biochem Biophys 463(2):149–167

    Article  PubMed  CAS  Google Scholar 

  • Leyendecker M, Korsten P, Reinehr R, Speckmann B, Schmoll D, Scherbaum WA, Bornstein SR, Barthel A, Klotz LO (2011) Ceruloplasmin expression in rat liver cells is attenuated by insulin: role of FoxO transcription factors. Horm Metab Res 43(4):268–274

    Article  CAS  PubMed  Google Scholar 

  • Linder MC, Hazegh-Azam M (1996) Copper biochemistry and molecular biology. Am J Clin Nutr 63(5):797S–811S

    CAS  PubMed  Google Scholar 

  • Linder MC (1991) The biochemistry of copper. Plenum, New York, NY

    Book  Google Scholar 

  • Liu G, Huang W, Moir RD, Vanderburg CR, Lai B, Peng Z, Tanzi RE, Rogers JT, Huang X (2006) Metal exposure and Alzheimer’s pathogenesis. J Struct Biol 155:45–51

    Article  CAS  PubMed  Google Scholar 

  • Lukasewycz OA, Prohaska JR (1990) The immune response in copper deficiency. Ann N Y Acad Sci 587:147–159

    Article  CAS  PubMed  Google Scholar 

  • Lutsenko S, Barnes NL, Bartee MY, Dmitriev OY (2007) Function and regulation of human copper-transporting ATPases. Physiol Rev 87(3):1011–1046

    Article  CAS  PubMed  Google Scholar 

  • Lutsenko S (2016) Copper trafficking to the secretory pathway. Metallomics 8(9):840–852

    Article  CAS  PubMed  Google Scholar 

  • Malavolta M, Piacenza F, Basso A, Giacconi R, Costarelli L, Mocchegiani E (2015) Serum copper to zinc ratio: relationship with aging and health status. Mech Ageing Dev 151:93–100

    Article  CAS  PubMed  Google Scholar 

  • Massie HR, Aiello VR (1984) Excessive intake of copper: influence on longevity and cadmium accumulation in mice. Mech Ageing Dev 26(2–3):195–203

    Article  CAS  PubMed  Google Scholar 

  • Massie HR, Williams TR, Aiello VR (1984) Influence of dietary copper on the survival of Drosophila. Gerontology 30(2):73–78

    Article  CAS  PubMed  Google Scholar 

  • Matos I, Gouveia A, Almeida H (2012) Copper ability to induce premature senescence in human fibroblast. Age 34:783–794

    Article  CAS  PubMed  Google Scholar 

  • Matos L, Gouveia A, Almeida H (2014) ER stress response in human cellular models of Scenscence. J Gerontolog A Biol Sci Med Sci 2015:924–935. https://doi.org/10.1093/gerona/glu129

    Article  CAS  Google Scholar 

  • Matos L, Gouveia A, Almeida H (2017) Resveratrol attenuates copper-induced senescence by improving cellular proteostasis. Oxidative Med Cell Longevity. 2017, Article ID 3793817:12 pp

    Google Scholar 

  • Méplan C (2011) Trace elements and ageing, a genomic perspective using selenium as an example. J Trace Elem Med Biol 25(Suppl 1):S11–S16

    Article  PubMed  CAS  Google Scholar 

  • Mercer J, Abbrosini L, Horton S, Gazeas S, Grimes A (1999) Animal models of Menkes disease. Adv Exp Biol Med 448:97–108

    Article  CAS  Google Scholar 

  • Mercer J (1998) Menkes syndrome and animal models. Am J Clin Nutr 67:1022S–1028S

    Article  CAS  PubMed  Google Scholar 

  • Mocchegiani E, Costarelli L, Giacconi R, Malavolta M, Basso A, Piacenza F, Ostan R, Cevenini E, Gonos ES, Monti D (2014) Micronutrient-gene interactions related to inflammatory/immune response and antioxidant activity in ageing and inflammation. A systematic review. Mech Ageing Dev 137:29–49

    Article  CAS  Google Scholar 

  • Mocchegiani E, Costarelli L, Giacconi R, Piacenza F, Basso A, Malavolta M (2012) Micronutrient (Zn, Cu, Fe)-gene interactions in ageing and inflammatory age-related diseases: implications for treatments. Ageing Res Rev 11(2):297–319 (Apr 2012)

    Article  CAS  PubMed  Google Scholar 

  • Moreira PI, Nunomura A, Nakamura M, Takeda A, Shenk JC, Aliev G, Smith MA, Perry G (2008) Nucleic acid oxidation in Alzheimer disease. Free Radic Biol Med 44:1493–1505

    Article  CAS  PubMed  Google Scholar 

  • Müller T, Müller W, Feichtinger H (1998) Idiopathic copper toxicosis. Am J Clin Nutr 67:1082S–1086S

    Article  PubMed  Google Scholar 

  • Murthy M, Ram JL (2015) Invertebrates as model organisms for research on aging biology. Invertebr Reprod Dev 59(sup1):1–4

    Article  PubMed  Google Scholar 

  • National Academy of Sciences (NAS) (1989) Recommended dietary allowances, 10th edn. Washington, DC, pp 224–230

    Google Scholar 

  • Neumann PZ, Sass-Kortsak A (1967) State of copper in human serum: evidence for amino acid-bound fraction. J Clin Invest 46:646–658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Olivares M, Méndez MA, Astudillo PA, Pizarro F (2008) Present situation of biomarkers for copper status. Am J Clin Nutr 88(3):859S–862S

    Article  CAS  PubMed  Google Scholar 

  • Opazo CM, Greenough MA, Bush AI (2014) Copper: from neurotransmission to neuroproteostasis. Front Aging Neurosci 3(6):143. https://doi.org/10.3389/fnagi.2014.00143

    Article  CAS  Google Scholar 

  • Ota H, Akishita M, Eto M, Iijima K, Kaneki M, Ouchi Y (2007) Sirt1 modulates premature senescence-like phenotype in human endothelial cells. J Mol Cell Cardiology 43(5):571–579

    Article  CAS  Google Scholar 

  • Pandit AN, Bhave SA (2002) Copper metabolic defects and liver disease. J Gastroenterol Hepatol 17:S403–S407

    Article  Google Scholar 

  • Park YM, Febbraio M, Silverstein RL (2009) CD36 modulates migration of mouse and human macrophages in response to oxidized LDL and may contribute to macrophage trapping in the arterial intima. J Clin Invest 119(1):136–145

    Google Scholar 

  • Percival SS (1998) Copper and immunity. Am J Clin Nutr 67(5 Suppl):1064S–1068S

    Article  CAS  PubMed  Google Scholar 

  • Peters C, Muñoz B, Sepúlveda FJ, Urrutia J, Quiroz M, Luza S, De Ferrari GV, Aguayo LG, Opazo C (2011) Biphasic effects of copper on neurotransmission in rat hippocampal neurons. J Neurochem 119(1):78–88

    Article  CAS  PubMed  Google Scholar 

  • Petris MJ, Mercer JFB, Culvenor JG, Lockhart P, Gleeson PA, Camakaris J (1996) Ligand-regulated transport of the Menkes copper P-type ATPase efflux pump from the Golgi apparatus to the plasma membrane: a novel mechanism of regulated trafficking. EMBO 15:6084–6095

    Article  CAS  Google Scholar 

  • Popper H, Irmin SG, Chandra N, Madhavan TV (1979) Cytoplasmic copper and its toxic effects studies in indian childhood cirrhosis. Lancet 1(8128):1205–1208

    Article  CAS  PubMed  Google Scholar 

  • Pratt WB, Omdahl JL, Sorenson JRJ (1985) Lack of effects of copper gluconate supplementation. Am J Clin Nutr 42:681–682

    Article  CAS  PubMed  Google Scholar 

  • Robert A, Liu Y, Nguyen M, Meunier B (2015) Regulation of copper and iron homeostasis by metal chelators: a possible chemotherapy for Alzheimer’s disease. Acc Chem Res 19; 48(5):1332–1339

    Article  CAS  PubMed  Google Scholar 

  • Rosen DR, Siddique T, Patterson D, Figlewicz DA, Sapp P, Hentati A, Donaldson D, Goto J et al (1993) Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature 362:59–62

    Article  CAS  PubMed  Google Scholar 

  • Saari JT, Bode AM, Dahlen GM (1995) Defects of copper deficiency in rats are modified by dietary treatments that affect glycation. J Nutr 125(12):2925–2934

    CAS  PubMed  Google Scholar 

  • Saltman PD, Strause LG (1993) The role of trace minerals in osteoporosis. J Am Coll Nutr 12:384–389

    Article  CAS  PubMed  Google Scholar 

  • Sass-Kortsak A (1965) Copper metabolism. Adv Clin Chem 8:1–67

    CAS  PubMed  Google Scholar 

  • Scheinberg IH, Sternlieb I (1996) Wilson disease and idiopathic copper toxicosis. Am J Clin Nutr 63(5):842S–845S

    Article  CAS  PubMed  Google Scholar 

  • Schlief ML, Craig AM, Gitlin JD (2005) NMDA receptor activation mediates copper homeostasis in hippocampal neurons. J Neurosci 25:239–246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Servos J, Hamann A, Grimm C, Osiewacz HD (2012) A differential genome-wide transcriptome analysis: impact of cellular copper on complex biological processes like aging and development. PLoS ONE 7(11):e49292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith DG, Cappai R, Barnham KJ (2007) The redox chemistry of the Alzheimer’s disease amyloid beta peptide. Biochim Biophys Acta 1768:1976–1990

    Article  CAS  PubMed  Google Scholar 

  • Snyder RD, Friedman MB (1998) Enhancement of cytotoxicity and clastogenicity of l-DOPA and dopamine by manganese and copper. Mutat Res 405:1–8

    Article  CAS  PubMed  Google Scholar 

  • Sorenson JR (1988) Anti-inflammatory, analgesic, and antiulcer activities of copper complexes suggest their use in a physiologic approach to treatment of arthritic diseases. Basic Life Sci 49:591–594

    CAS  PubMed  Google Scholar 

  • Stuerenburg HJ (2000) CSF copper concentrations, blood-brain barrier function and coeruloplasmin synthesis during the treatment of Wilson’s disease. J Neural Transm 107:321–329

    Article  CAS  PubMed  Google Scholar 

  • Suazo M, Olivares F, Mendez MA, Pulgar R, Prohaska JR, Arredondo M, Pizarro F, Olivares M, Araya M, González M (2008) CCS and SOD1 mRNA are reduced after copper supplementation in peripheral mononuclear cells of individuals with high serum ceruloplasmin concentration. J Nutr Biochem 19(4):269–274

    Article  CAS  PubMed  Google Scholar 

  • Suttle NF, Angus KW (1976) Experimental copper deficiency in the calf. J Comp Pathol 86(4):595–608

    Article  CAS  PubMed  Google Scholar 

  • Turnlund JR, Keyes WR, Anderson HL, Acord LL (1989) Copper absorption and retention in young men at three levels of dietary copper by use of the stable isotope 65Cu. Am J Clin Nutr 49(5):870–878

    Article  CAS  PubMed  Google Scholar 

  • Turnlund JR (1998) Human whole-body copper metabolism. Am J Clin Nutr 67:960S–964S

    Article  CAS  PubMed  Google Scholar 

  • Uauy R, Maass A, Araya M (2008) Estimating risk from copper excess in human populations. Am J Clin Nutr 88(3):867S–871S

    Article  CAS  PubMed  Google Scholar 

  • Uauy R, Olivares M, Gonzalez M (1998) Essentiality of copper in humans. Am J Clin Nutr 67(5 Suppl):952S–959S

    Article  CAS  PubMed  Google Scholar 

  • Uversky VN (2007) Neuropathology, biochemistry, and biophysics of alpha-synuclein aggregation. J Neurochem 103:17–37

    CAS  PubMed  Google Scholar 

  • Velez S, Nair NG, Reddy P (2008) Transition metal ion binding studies of carnosine and histidine: biologically relevant antioxidants. Colloids Surf B Biointerfaces 66:291–294

    Article  CAS  PubMed  Google Scholar 

  • Waggoner D, Bartnikas T, Gitlin J (1999) The role of copper in neurodegenerative disease. Neurobiol Dis 6:221–230

    Article  CAS  PubMed  Google Scholar 

  • Wataha JC, Lockwood PE, Schedle A, Noda M, Bouillaguet S (2002) Ag, Cu, Hg and Ni ions alter the metabolism of human monocytes during extended low-dose exposures. J Oral Rehabil 29(2):133–139

    Article  CAS  PubMed  Google Scholar 

  • Weiss KC, Linder MC (1985) Copper transport in rats involving a new plasma protein. A J Physiol 249:E77–E88

    CAS  Google Scholar 

  • White C, Lee J, Kambe T, Fritsche K, Petris MJ (2009) A role for the ATP7Acopper-transporting ATPase in macrophage bactericidal activity. J Biol Chem 284:33949–33956

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • WHO (1973) Report of an Expert Committee. Trace elements in human nutrition. Tech Rep Ser No 532, WHO, Geneva

    Google Scholar 

  • WHO/FAO/IAEA (1996) Copper. In: Trace elements in human nutrition and health. World Health Organization, Geneva, pp 123–143

    Google Scholar 

  • Yamaguchi Y, Heiny ME, Suzuki M, Gitlin J (1996) Biochemical characterization and intracellular localization of the Menkes disease protein. Proc Natl Acad Sci 93:14030–14035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamashita S, Ogawa K, Ikei T, Udono M, Fujiki T, Katakura Y (2012) SIRT1 prevents replicative senescence of normal human umbilical cord fibroblast through potentiating the transcription of human telomerase reverse transcriptase gene. Biochem Biophys Res Comm 417(1):630–634

    Article  CAS  PubMed  Google Scholar 

  • Yim MB, Kang JH, Yim HS, Kwak HS, Chock PB, Stadtman ER (1996) Again-of-function of an amyotrophic lateral sclerosis-associated Cu-Zn-superoxide dismutase mutant: an enhancement of free radical formation due to a decrease in Km for hydrogen peroxide. Proc Natl Acad Sci USA 93:5709–5714

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng L, Han P, Liu J, Li R, Yin W, Wang T, Zhang W, Kang YJ (2015) Role of copper in regression of cardiac hypertrophy. Pharmacol Ther 148:66–84

    Article  CAS  PubMed  Google Scholar 

  • Ziyatdinova GK, Voloshin AV, Gilmutdinov AK, Budnikov HC, Ganeev TS (2006) Application of constant-current coulometry for estimation of plasma total antioxidant capacity and its relationship with transition metal contents. J Pharm Biomed Anal 40(4):958–963

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge funding from a European Union RISE grant (H2020-RISE 2016-734931 MILEAGE)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miguel Arredondo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Arredondo, M., González, M., Latorre, M. (2018). Copper. In: Malavolta, M., Mocchegiani, E. (eds) Trace Elements and Minerals in Health and Longevity. Healthy Ageing and Longevity, vol 8. Springer, Cham. https://doi.org/10.1007/978-3-030-03742-0_2

Download citation

Publish with us

Policies and ethics