Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

Abstract

Nowadays, even though artificial cognitive architectures represent an emerging field of research, there are many constraints on the broad application of artificial cognitive control at an industrial level and very few systematic approaches truly inspired in biological processes, from the perspective of control engineering. One way to address the bio inspiration is the emulation of human socio-cognitive skills and to formalize this approach from the viewpoint of control engineering facing actual industrial problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hurley S (2008) The shared circuits model (SCM): how control, mirroring, and simulation can enable imitation, deliberation, and mindreading. Behav Brain Sci 31(1):1–22

    Article  Google Scholar 

  2. Sanz R, Hernández C, Hernando A, Gómez J, Bermejo J (2009) Grounding robot autonomy in emotion and self-awareness. In: Lecture notes in computer science (including subseries lecture notes in artificial intelligence and lecture notes in bioinformatics) vol 5744 LNCS, pp 23–43

    Chapter  Google Scholar 

  3. Felix RA, Sanchez EN, Loukianov AG (2009) Neural block control for synchronous generators. Eng Appl Artif Intell 22(8):1159–1166

    Article  Google Scholar 

  4. Sánchez Boza A, Guerra RH, Gajate A (2011) Artificial cognitive control system based on the shared circuits model of sociocognitive capacities. A first approach. Eng Appl Artif Intell 24(2):209–219

    Article  Google Scholar 

  5. Makino T (2008) Failure, instead of inhibition, should be monitored for the distinction of self/other and actual/possible actions. Behav Brain Sci Note 31(1):32–33

    Google Scholar 

  6. Llinás RR, Roy S (2009) The ‘prediction imperative’ as the basis for self-awareness. Philos Trans R Soc Lond B: Biol Sci 364(1521):1301–1307

    Article  Google Scholar 

  7. Carpendale JIM, Lewis C (2008) Mirroring cannot account for understanding action. Behav Brain Sci Note 31(1):23–24

    Google Scholar 

  8. Imamizu H, Kawato M (2009) Brain mechanisms for predictive control by switching internal models: Implications for higher-order cognitive functions. Psychol Res 73(4):527–544

    Article  Google Scholar 

  9. Peterburs J, Desmond JE (2016) The role of the human cerebellum in performance monitoring. Curr Opin Neurobiol 40:38–44

    Article  Google Scholar 

  10. Ishikawa T, Tomatsu S, Izawa J, Kakei S (2016) The cerebro-cerebellum: could it be loci of forward models? Neurosci Res 104:72–79

    Article  Google Scholar 

  11. Precup R-E, Angelov P, Costa BSJ, Sayed-Mouchaweh M (2015) An overview on fault diagnosis and nature-inspired optimal control of industrial process applications. Comput Ind 74:75–94

    Article  Google Scholar 

  12. Chungoora N et al (2013) A model-driven ontology approach for manufacturing system interoperability and knowledge sharing. Comput Ind 64(4):392–401

    Article  Google Scholar 

  13. Kit D, Ballard DH, Sullivan B, Rothkopf CA (2013) A hierarchical modular architecture for embodied cognition. Multisens Res Article 26(1–2):177–204

    Google Scholar 

  14. Kaelbling LP, Littman ML, Moore AW (1996) Reinforcement learning: a survey. J Artif Int Res 4(1):237–285

    Google Scholar 

  15. Szepesvári C (2010) Algorithms for reinforcement learning. Synth Lect Artif Intell Mach Learn 4(1):1–103

    Article  MATH  Google Scholar 

  16. Boubertakh H, Tadjine M, Glorennec P-Y, Labiod S (2010) Tuning fuzzy PD and PI controllers using reinforcement learning. ISA Trans 49(4):543–551

    Article  Google Scholar 

  17. Haber RE, Juanes C, del Toro R, Beruvides G (2015) Artificial cognitive control with self-x capabilities: a case study of a micro-manufacturing process. Comput Ind

    Google Scholar 

  18. Wang Y, Yang Y (2009) Particle swarm optimization with preference order ranking for multi-objective optimization. Inf Sci 179(12):1944–1959

    Article  MathSciNet  Google Scholar 

  19. Zhang J, Zhuang J, Du H, Wang Sa (2009) Self-organizing genetic algorithm based tuning of PID controllers. Inf Sci 179(7):1007–1018

    Article  MATH  Google Scholar 

  20. Chen T, Tang K, Chen G, Yao X (2010) Analysis of computational time of simple estimation of distribution algorithms (in English). IEEE Trans Evol Comput 14(1):1–22

    Article  Google Scholar 

  21. Rubinstein R (2008) Semi-iterative minimum cross-entropy algorithms for rare-events, counting, combinatorial and integer programming (in English). Methodol Comput Appl Probab 10(2):121–178

    Article  MathSciNet  MATH  Google Scholar 

  22. Fatemi M, Haykin S (2014) Cognitive control: theory and application. Access IEEE 2:698–710

    Article  Google Scholar 

  23. Juanes C (2014) Diseño e implementación de estrategias self-x en una arquitectura de control cognitivo artificial. Grado en ingeniería informática y en matemática, Escuela Politécnica Superior, Universidad Autónoma de Madrid, Madrid, España

    Google Scholar 

  24. Ito M (2008) Control of mental activities by internal models in the cerebellum. Nat Rev Neurosci 9(4):304–313

    Article  Google Scholar 

  25. jFuzzyLogic Fuzzy Control Language (2017). Available: http://jfuzzylogic.sourceforge.net/html/manual.html

  26. COGNETCON packages function repository (2016) Available: http://gamhe.eu/downloads/?route=.%2FCognetcon

  27. Park K, Han Y, Hur Th, Lee Y-K (2015) Correlated subgraph search for multiple query graphs in graph streams. In: Presented at the proceedings of the 9th international conference on ubiquitous information management and communication, Bali, Indonesia

    Google Scholar 

  28. Schmidt DC, Levine DL, Mungee S (1998) Quality of services in distributed systems the design of the TAO real-time object request broker. Comput Commun 21(4):294–324

    Article  Google Scholar 

  29. Henning M (2009) Choosing middleware: why performance and scalability do (and do not) Matter

    Google Scholar 

  30. Koning JF, Heemskerk CJM, Schoen P, Smedinga D, Boode AH, Hamilton DT (2013) Evaluating ITER remote handling middleware concepts. Fusion Eng Des 88(9–10):2146–2150

    Article  Google Scholar 

  31. Unified Modeling Language (2016) Available: http://www.uml.org/

  32. Real Time Specification for Java (2016) Available: http://www.rtsj.org/

  33. S.W.a.I. Generator (2016) Available: http://www.swig.org/index.php

  34. Raspberry Pi 2 model B specifications (2016) http://docs-europe.electrocomponents.com/webdocs/1392/0900766b8139232d.pdf

  35. Beruvides G, Quiza R, Toro R, Castaño F, Haber RE (2014) Correlation of the holes quality with the force signals in a microdrilling process of a sintered tungsten-copper alloy. Int J Precis Eng Manufact J Article 15(9):1801–1808

    Article  Google Scholar 

  36. Beruvides G, Juanes C, Castano F, Haber RE (2015) A self-learning strategy for artificial cognitive control systems. In: IEEE International conference on industrial informatics (INDIN), pp 1180–1185

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerardo Beruvides .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Beruvides, G. (2019). Artificial Cognitive Architecture. Design and Implementation. In: Artificial Cognitive Architecture with Self-Learning and Self-Optimization Capabilities. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-030-03949-3_4

Download citation

Publish with us

Policies and ethics