Skip to main content

Heat Shock Response and Metabolism in Skeletal Muscle

  • Chapter
  • First Online:
Heat Shock Proteins in Signaling Pathways

Part of the book series: Heat Shock Proteins ((HESP,volume 17))

  • 585 Accesses

Abstract

Skeletal muscle comprises approximately 40% of the total body mass in humans. It plays important roles in locomotion, metabolism and endocrine signaling. We and others have previously described the biological responses/adaptations of skeletal muscle to heat stress, the contributions of heat shock proteins to the cellular processes underlying the muscle response to heat stress, and the therapeutic potential of manipulating heat stress and heat shock proteins in skeletal muscle. In this chapter, I briefly summarize current understanding of the heat stress-induced regulation of protein, glucose and mitochondrial metabolism in skeletal muscle. Furthermore, I overview future perspectives on studies of the heat shock response in skeletal muscle biology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AMPK:

AMP-activated protein kinase

BGP-15:

O-[3-piperidino-2-hydroxy-1-propyl]-nicotinic amidoxime

CaMKII:

Ca2+/calmodulin-dependent protein kinase II

DEPTORDEP:

domain-containing mTOR-interacting protein

FOXO:

forkhead box O

GLUT:

glucose transporter

HSE:

heat shock element

HSF1:

heat shock factor 1

HSP:

heat shock protein

IGF-1:

insulin-like growth factor 1

JNK:

c-Jun N-terminal kinases

LC3:

microtubule-associated proteins 1A/1B light chain 3

MAPK:

mitogen-activated protein kinase

MFN2:

mitofusion 2

MLST8:

MTOR associated protein

mTOR:

mechanistic target of rapamycin

NRF:

nuclear respiratory factor

PGC-1α:

peroxisome proliferator-activated receptor gamma coactivator 1-alpha

PP2A:

protein phosphatase 2

PPAR:

peroxisome proliferator-activated receptor

PRAS:

proline-rich Akt substrate

RAPTOR:

regulatory-associated protein

ROS:

reactive oxygen species

UPR:

unfolded protein response

VDAC:

voltage-dependent anion channels

References

  • Agudelo LZ, Femenía T, Orhan F, Porsmyr-Palmertz M, Goiny M, Martinez-Redondo V et al (2014) Skeletal muscle PGC-1α1 modulates kynurenine metabolism and mediates resilience to stress-induced depression. Cell 159(1):33–45

    Article  CAS  PubMed  Google Scholar 

  • Bonaldo P, Sandri M (2013) Cellular and molecular mechanisms of muscle atrophy. Dis Model Mech 6(1):25–39

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carter HN, Chen CCW, Hood DA (2015) Mitochondria, muscle health, and exercise with advancing age. Physiology 30(3):208–223

    Article  CAS  PubMed  Google Scholar 

  • Chou S-D, Prince T, Gong J, Calderwood SK (2012) mTOR is essential for the proteotoxic stress response, HSF1 activation and heat shock protein synthesis. PLoS One 7(6):e39679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • DeFronzo RA, Alvestrand A, Smith D, Hendler R, Hendler E, Wahren J (1981) Insulin resistance in uremia. J Clin Investig 67(2):563–568

    Article  CAS  PubMed  Google Scholar 

  • Drake JC, Yan Z (2017) Mitophagy in maintaining skeletal muscle mitochondrial proteostasis and metabolic health with aging. J Physiol. https://doi.org/10.1113/JP274337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Drew BG, Ribas V, Le JA, Henstridge DC, Phun J, Zhou Z et al (2014) HSP72 is a mitochondrial stress sensor critical for Parkin action, oxidative metabolism, and insulin sensitivity in skeletal muscle. Diabetes 63(5):1488–1505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fitts RH, Booth FW, Winder WW, Holloszy JO (1975) Skeletal muscle respiratory capacity, endurance, and glycogen utilization. Am J Phys 228(4):1029–1033

    Article  CAS  Google Scholar 

  • Gomez-Pastor R, Burchfiel ET, Thiele DJ (2017) Regulation of heat shock transcription factors and their roles in physiology and disease. Nat Rev Mol Cell Biol. https://doi.org/10.1038/nrm.2017.73

    Article  PubMed  PubMed Central  Google Scholar 

  • Goto A, Egawa T, Sakon I, Oshima R, Ito K, Serizawa Y et al (2015) Heat stress acutely activates insulin-independent glucose transport and 5′-AMP-activated protein kinase prior to an increase in HSP72 protein in rat skeletal muscle. Physiol Rep 3(11):e12601

    Article  PubMed  PubMed Central  Google Scholar 

  • Gupte AA, Bomhoff GL, Swerdlow RH, Geiger PC (2009) Heat treatment improves glucose tolerance and prevents skeletal muscle insulin resistance in rats fed a high-fat diet. Diabetes 58(3):567–578

    Article  PubMed  PubMed Central  Google Scholar 

  • Gwag T, Park K, Park J, Lee JH, Nikawa T, Choi I (2015) Celastrol overcomes HSP72 gene silencing-mediated muscle atrophy and induces myofiber preservation. J Physiol Pharmacol 66(2):173–283

    Google Scholar 

  • Hancock CR, Han DH, Chen M, Terada S, Yasuda T, Wright DC, Holloszy JO (2008) High-fat diets cause insulin resistance despite an increase in muscle mitochondria. Proc Natl Acad Sci 105(22):7815–7820

    Article  CAS  PubMed  Google Scholar 

  • Henstridge DC, Bruce CR, Drew BG, Tory K, Kolonics A, Estevez E et al (2014) Activating HSP72 in rodent skeletal muscle increases mitochondrial number and oxidative capacity and decreases insulin resistance. Diabetes 63(6):1881–1894

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hood DA, Tryon LD, Vainshtein A, Memme J, Chen C, Pauly M et al (2015) Exercise and the regulation of mitochondrial turnover. Prog Mol Biol Transl Sci 135:99–127

    Article  CAS  PubMed  Google Scholar 

  • Hood DA, Tryon LD, Carter HN, Kim Y, Chen CC (2016) Unravelling the mechanisms regulating muscle mitochondrial biogenesis. Biochem J 473(15):2295–2314

    Article  CAS  PubMed  Google Scholar 

  • Hooper PL (1999) Hot-tub therapy for type 2 diabetes mellitus. N Engl J Med 341(12):924–925

    Article  CAS  PubMed  Google Scholar 

  • Kakigi R, Naito H, Ogura Y, Kobayashi H, Saga N, Ichinoseki-Sekine N et al (2011) Heat stress enhances mTOR signaling after resistance exercise in human skeletal muscle. J Physiol Sci 61(2):131–140. https://doi.org/10.1007/s12576-010-0130-y

    Article  CAS  PubMed  Google Scholar 

  • Kim Y, Triolo M, Hood DA (2017) Impact of aging and exercise on mitochondrial quality control in skeletal muscle. Oxidative Med Cell Longev 2017. https://doi.org/10.1155/2017/3165396

    CAS  Google Scholar 

  • Koshinaka K, Kawamoto E, Abe N, Toshinai K, Nakazato M, Kawanaka K (2013) Elevation of muscle temperature stimulates muscle glucose uptake in vivo and in vitro. J Physiol Sci 63(6):409–418

    Article  CAS  PubMed  Google Scholar 

  • Li J, Labbadia J, Morimoto RI (2017) Trends Cell Biol. https://doi.org/10.1016/j.tcb.2017.08.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu CT, Brooks GA (2012) Mild heat stress induces mitochondrial biogenesis in C2C12 myotubes. J Appl Physiol 112(3):354–361

    Article  CAS  PubMed  Google Scholar 

  • Ma X, Xu L, Alberobello AT, Gavrilova O, Bagattin A, Skarulis M et al (2015) Celastrol protects against obesity and metabolic dysfunction through activation of a HSF1-PGC1α transcriptional axis. Cell Metab 22(4):695–708

    Article  CAS  PubMed  Google Scholar 

  • Morton JP, Kayani AC, McArdle A, Drust B (2009) The exercise-induced stress response of skeletal muscle, with specific emphasis on humans. Sports Med 39(8):643–662

    Article  PubMed  Google Scholar 

  • Naito H, Yoshihara T, Kakigi R, Ichinoseki-Sekine N, Tsuzuki T (2012) Heat stress-induced changes in skeletal muscle: heat shock proteins and cell signaling transduction. J Phys Fit Sports Med 1(1):125–131

    Article  Google Scholar 

  • Ohno Y, Egawa T, Yokoyama S, Nakai A, Sugiura T, Ohira Y et al (2015) Deficiency of heat shock transcription factor 1 suppresses heat stress-associated increase in slow soleus muscle mass of mice. Acta Physiol 215(4):191–203

    Article  CAS  Google Scholar 

  • Oishi Y, Ogata T (2012) Skeletal muscle fiber plasticity: heat shock proteins and satellite cell activation. J Phys Fitness Sports Med 1(3):473–478

    Article  Google Scholar 

  • Powers SK, Wiggs MP, Duarte JA, Zergeroglu AM, Demirel HA (2012) Mitochondrial signaling contributes to disuse muscle atrophy. Am J Physiol Endocrinol Metab 303(1):E31–E39

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qiao A, Jin X, Pang J, Moskophidis D, Mivechi NF (2017) The transcriptional regulator of the chaperone response HSF1 controls hepatic bioenergetics and protein homeostasis. J Cell Biol 216(3):723–741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sanchez AMJ, Candau RB, Csibi A, Pagano AF, Raibon A, Bernardi H (2012) The role of AMP-activated protein kinase in the coordination of skeletal muscle turnover and energy homeostasis. Am J Physiol Cell Physiol 303(5):C475–C485

    Article  CAS  PubMed  Google Scholar 

  • Sarangi U, Singh MK, Abhijnya KVV, Prasanna Anjaneya Reddy L, Siva Prasad A, Pitke VV et al (2013) Hsp60 chaperonin acts as barrier to pharmacologically induced oxidative stress mediated apoptosis in tumor cells with differential stress response. Drug Target Insights 2013(7):35–51

    Google Scholar 

  • Schlesinger MJ (1990) Heat shock proteins. J Biol Chem 265(21):12111–12114

    CAS  PubMed  Google Scholar 

  • Schnyder S, Handschin C (2015) Skeletal muscle as an endocrine organ: PGC-1α, myokines and exercise. Bone 80:115–125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tamura Y, Hatta H (2017) Heat stress induces mitochondrial adaptations in skeletal muscle. J Phys Fit Sports Med 6(3):151–158

    Article  Google Scholar 

  • Tamura Y, Matsunaga Y, Masuda H, Takahashi Y, Takahashi Y, Terada S et al (2014) Postexercise whole body heat stress additively enhances endurance training-induced mitochondrial adaptations in mouse skeletal muscle. Am J Physiol Regul Integr Comp Physiol 307(7):R931–R943

    Article  CAS  PubMed  Google Scholar 

  • Tamura Y, Kitaoka Y, Matsunaga Y, Hoshino D, Hatta H (2015) Daily heat stress treatment rescues denervation-activated mitochondrial clearance and atrophy in skeletal muscle. J Physiol 593(12):2707–2720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tamura Y, Matsunaga Y, Kitaoka Y, Hatta H (2017) Effects of heat stress treatment on age-dependent unfolded protein response in different types of skeletal muscle. J Gerontol A Biol Sci Med Sci 72(3):299–308

    CAS  PubMed  Google Scholar 

  • Tezze C, Romanello V, Desbats MA, Fadini GP, Albiero M, Favaro G et al (2017) Age-associated loss of OPA1 in muscle impacts muscle mass, metabolic homeostasis, systemic inflammation, and epithelial senescence. Cell Metab 25(6):1374–1389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tryon LD, Vainshtein A, Memme JM, Crilly MJ, Hood DA (2014) Recent advances in mitochondrial turnover during chronic muscle disuse. Integr Med Res 3(4):161–171

    Article  PubMed  PubMed Central  Google Scholar 

  • Tsuchida W, Iwata M, Akimoto T, Matsuo S, Asai Y, Suzuki S (2017) Heat stress modulates both anabolic and catabolic signaling pathways preventing dexamethasone-induced muscle atrophy in vitro. J Cell Physiol 232(3):650–664

    Article  CAS  PubMed  Google Scholar 

  • Tsuzuki T, Kobayashi H, Yoshihara T, Kakigi R, Ichinoseki-Sekine N, Naito H (2017) Attenuation of exercise-induced heat shock protein 72 expression blunts improvements in whole-body insulin resistance in rats with type 2 diabetes. Cell Stress Chaperones 22(2):263–269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang T, Yu Q, Chen J, Deng B, Qian L, Le Y (2010) PP2A mediated AMPK inhibition promotes HSP70 expression in heat shock response. PLoS One 5(10):e13096. https://doi.org/10.1371/journal.pone.0013096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamaguchi T, Omori M, Tanaka N, Fukui N (2013) Distinct and additive effects of sodium bicarbonate and continuous mild heat stress on fiber type shift via calcineurin/NFAT pathway in human skeletal myoblasts. Am J Physiol Cell Physiol 305(3):C323–C333

    Article  CAS  PubMed  Google Scholar 

  • Yoon MS (2017) mTOR as a key regulator in maintaining skeletal muscle mass. Front Physiol 8:00788

    Article  Google Scholar 

  • Yoshihara T, Naito H, Kakigi R, Ichinoseki-Sekine N, Ogura Y, Sugiura T, Katamoto S (2013) Heat stress activates the Akt/mTOR signalling pathway in rat skeletal muscle. Acta Physiol 207(2):416–426

    Article  CAS  Google Scholar 

  • Yoshihara T, Sugiura T, Yamamoto Y, Shibaguchi T, Kakigi R, Naito H (2015) The response of apoptotic and proteolytic systems to repeated heat stress in atrophied rat skeletal muscle. Physiol Rep 3(10):e12597

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Yuki Tamura is the recipient of a post-doctoral fellowship from the Japan Society for the Promotion of Science, Tokyo, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuki Tamura .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tamura, Y. (2019). Heat Shock Response and Metabolism in Skeletal Muscle. In: Asea, A., Kaur, P. (eds) Heat Shock Proteins in Signaling Pathways. Heat Shock Proteins, vol 17. Springer, Cham. https://doi.org/10.1007/978-3-030-03952-3_3

Download citation

Publish with us

Policies and ethics