Skip to main content

Modularity Maximization for Community Detection Using Genetic Algorithm

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2018)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11302))

Included in the following conference series:

  • 2208 Accesses

Abstract

Modularity function is a widely-used criterion to evaluate the strength of community structure in community detection. In this paper, we propose a modularity maximization method for detecting communities, based on genetic algorithm and random walk model, and propose a new community structure encoding method for networks. First, the random walk model was applied to calculate the similarity between nodes, resulting in a weighted matrix as derived from the original adjacency matrix. According to the nearest neighbor-based similarity representation provisional, a weighted network connection structure was then coded into a chromosome. The genetic algorithm modified the structure of a predefined number of chromosomes and computed the corresponding modularity, ultimately yielding the maximum value of modularity as it corresponds to community structure and number of communities. We tested this method on a series of real social networks. Compared with several state-of-the-art methods, the novel method obtained both greater modularity value. Thus, results by the proposed method are more practical, since this method does not require specified number of communities at the outset of community partition. Here, the optimal number of communities and community structures are automatically determined.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Girvan, M., Newman, M.E.J.: Community structure in social and biological networks. Proc. Natl. Acad. Sci. U.S.A. 99, 7821–7826 (2002)

    Article  MathSciNet  Google Scholar 

  2. Newman, M.E.J., Girvan, M.: Finding and evaluating community structure in networks. Phys. Rev. E 69(2), 026113 (2004)

    Article  Google Scholar 

  3. Humphries, M.D.: Spike-train communities: finding groups of similar spike trains. J. Neurosci. 31(6), 2321–2336 (2011)

    Article  Google Scholar 

  4. Langone, R., Mall, R., Suykens, J.A.K.: Soft Kernel spectral clustering. In: Proceedings of the IJCNN, Dallas, Texas, pp. 1028–1035 (2013)

    Google Scholar 

  5. Langone, R., Mall, R., Vandewalle, J., Suykens, J.A.K.: Discovering cluster dynamics using kernel spectral methods. In: Lü, J., Yu, X., Chen, G., Yu, W. (eds.) Complex Systems and Networks. UCS, pp. 1–24. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-47824-0_1

    Chapter  Google Scholar 

  6. Chan, E.Y.K., Yeung, D.Y.: A convex formulation of modularity maximization for community detection. In: International Joint Conference on Artificial Intelligence, pp. 2218–2225. AAAI Press (2011)

    Google Scholar 

  7. Brandes, U., et al.: Maximizing modularity is hard. arXiv preprint physics/0608255 (2006)

    Google Scholar 

  8. Duch, J., Arenas, A.: Community detection in complex networks using extremal optimization. Phys. Rev. E 72(2), 027104 (2005)

    Article  Google Scholar 

  9. Tasgin, M., Herdagdelen, A., Bingol, H.: Community detection in complex networks using genetic algorithms. arXiv preprint arXiv:0711.0491 (2007)

  10. Pizzuti, C.: GA-Net: a genetic algorithm for community detection in social networks. In: Rudolph, G., Jansen, T., Beume, N., Lucas, S., Poloni, C. (eds.) PPSN 2008. LNCS, vol. 5199, pp. 1081–1090. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-87700-4_107

    Chapter  Google Scholar 

  11. Park, Y.J., Song, M.S.: A genetic algorithm for clustering problems. In: 3rd Annual Conference, pp. 568–575. Morgan, Kaufmann (1989)

    Google Scholar 

  12. Amelio, A., Pizzuti, C.: A genetic algorithm for color image segmentation. In: Esparcia-Alcázar, A.I. (ed.) EvoApplications 2013. LNCS, vol. 7835, pp. 314–323. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-37192-9_32

    Chapter  Google Scholar 

  13. Amelio, A., Pizzuti, C.: A new evolutionary-based clustering framework for image databases. In: Elmoataz, A., Lezoray, O., Nouboud, F., Mammass, D. (eds.) ICISP 2014. LNCS, vol. 8509, pp. 322–331. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-07998-1_37

    Chapter  Google Scholar 

  14. Newman, M.E.J.: Fast algorithm for detecting community structure in networks. Phys. Rev. E 69, 066133 (2004)

    Article  Google Scholar 

  15. Pons, P., Latapy, M.: Computing communities in large networks using random walks. In: Yolum, P., Güngör, T., Gürgen, F., Özturan, C. (eds.) ISCIS 2005. LNCS, vol. 3733, pp. 284–293. Springer, Heidelberg (2005). https://doi.org/10.1007/11569596_31

    Chapter  Google Scholar 

  16. Valencia, M., Pastor, M.A., Artieda, J., Martinerie, J., Chavez, M.: Complex modular structure of large-scale brain networks. Chaos Interdiscip. J. Nonlinear Sci. 19, 023119 (2009)

    Article  Google Scholar 

  17. Shi, J., Malik, J.: Normalized cuts and image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 22, 888–905 (2000)

    Article  Google Scholar 

  18. Hruschka, E.R.: A genetic algorithm for cluster analysis. Intell. Data Anal. 7, 15–25 (2003)

    Article  Google Scholar 

  19. Martelot, E.L., Hankin, C.: Multi-scale community detection using stability as optimisation criterion in a greedy algorithm. KDIR, pp. 216–225 (2011)

    Google Scholar 

  20. Psorakis, I., Roberts, S., Ebden, M., Sheldon, B.: Overlapping community detection using Bayesian non-negative matrix factorization. Phys. Rev. E 83(2), 066114 (2011)

    Article  Google Scholar 

  21. Ruan, J., Zhang, W.: Identifying network communities with a high resolution. Phys. Rev. E 77, 016104 (2008)

    Article  Google Scholar 

  22. Good, B.H., Montjoye, Y.A.D., Clauset, A.: Performance of modularity maximization in practical contexts. Phys. Rev. E Stat. Nonlin. Soft Matter. Phys. 81(2), 046106 (2009)

    MathSciNet  Google Scholar 

  23. Fortunato, S., Barthélemy, M.: Resolution limit in community detection. Proc. Natl. Acad. Sci. 104, 36–41 (2007)

    Article  Google Scholar 

  24. Guimerà, R., Danon, L., Díazguilera, A., Giralt, F., Arenas, A.: Self-similar community structure in a network of human interactions. Phys. Rev. E Stat. Nonlin. Soft Matter. Phys. 68, 065103 (2003)

    Article  Google Scholar 

  25. Bu, D., et al.: Topological structure analysis of the protein-protein interaction network in budding yeast. Nucleic Acids Res. 31(9), 2443–2450 (2003)

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported by the National Natural Science Foundation of China (Project No. 61375122 and Project No. 61572239). Scientific Research Foundation for Advanced Talents of Jiangsu University (Project No. 14JDG040). Postgraduate Research & Practice Innovation Program of Jiangsu Province (Project No. SJCX18_0741).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hu Lu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lu, H., Yao, Q. (2018). Modularity Maximization for Community Detection Using Genetic Algorithm. In: Cheng, L., Leung, A., Ozawa, S. (eds) Neural Information Processing. ICONIP 2018. Lecture Notes in Computer Science(), vol 11302. Springer, Cham. https://doi.org/10.1007/978-3-030-04179-3_41

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-04179-3_41

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-04178-6

  • Online ISBN: 978-3-030-04179-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics