Skip to main content

A Regularized Nonnegative Third Order Tensor decomposition Using a Primal-Dual Projected Gradient Algorithm: Application to 3D Fluorescence Spectroscopy

  • Conference paper
  • First Online:
Smart Multimedia (ICSM 2018)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 11010))

Included in the following conference series:

Abstract

This paper investigates the use of Primal-Dual optimization algorithms on multidimensional signal processing problems. The data blocks interpreted in a tensor way can be modeled by means of multi-linear decomposition. Here we will focus on the Canonical Polyadic Decomposition (CPD), and we will present an application to fluorescence spectroscopy using this decomposition. In order to estimate the factors or latent variables involved in these decompositions, it is usual to use criteria optimization algorithms. A classical cost function consists of a measure of the modeling error (fidelity term) to which a regularization term can be added if necessary. Here, we consider one of the most efficient optimization methods, Primal-Dual Projected Gradient.

The effectiveness and the robustness of the proposed approach are shown through numerical examples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Harshman, R.A.: Foundations of the PARAFAC procedure: models and conditions for an “explanatory” multi-modal factor analysis. UCLA Working Papers in Phonetics, vol. 16, pp. 1–84 (1970)

    Google Scholar 

  2. Carroll, J.D., Chang, J.J.: Analysis of individual differences in multidimensional scaling via an N-way generalization of “Eckart-Young” decomposition. Psychometrika 35(3), 283–319 (1970)

    Article  Google Scholar 

  3. Harshman, R.A., Lundy, M.E.: PARAFAC: parallel factor analysis. Comput. Stat. Data Anal. 18(1), 39–72 (1994)

    Article  Google Scholar 

  4. Harshman, R.A., Lundy, M.E.: The PARAFAC model for three-way factor analysis and multidimensional scaling. Res. Methods Multimode Data Anal. 46, 122–215 (1984)

    Google Scholar 

  5. Mocks, J.: Topographic components model for event-related potentials and some biophysical considerations. IEEE Trans. Biomed. Eng. 35(6), 482–484 (1988)

    Article  Google Scholar 

  6. Tendeiro, J., Dosse, M.B., Berge, T., Jos, M.F.: First and second-order derivatives for CP and INDSCAL. Chemom. Intell. Lab. Syst. 106(1), 27–36 (2011)

    Article  Google Scholar 

  7. Acar, E., Dunlavy, D.M., Kolda, T.G., et al.: Scalable tensor factorizations with missing data. In: Proceedings of the 2010 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics, pp. 701–712 (2010)

    Google Scholar 

  8. Kindermann, S., Navasca, C.: News algorithms for tensor decomposition based on a reduced functional. Numer. Linear Algebr. Appl. 21(3), 340–374 (2014)

    Article  MathSciNet  Google Scholar 

  9. Coble, P.G.: Characterization of marine and terrestrial dom in seawater using excitation-emission matrix spectroscopy. Mar. Chem. 52, 325–346 (1996)

    Article  Google Scholar 

  10. Smilde, A., Bro, R., Geladi, P.: Multi-way Analysis: Applications in the Chemical Sciences. Wiley, Hoboken (2005)

    Google Scholar 

  11. Royer, J.-P., Thirion-Moreau, N., Comon, P.: Computing the polyadic decomposition of nonnegative third order tensors. EURASIP Signal Process. 91(9), 2159–2171 (2011)

    Article  Google Scholar 

  12. Hitchcock, F.L.: The expression of a tensor or a polyadic as a sum of products. J. Math. Phys. 6, 165–189 (1927)

    Article  Google Scholar 

  13. Cichocki, A., Zdunek, R., Phan, A.H., Amari, S.I.: Non Negative Matrix and Tensor Factorizations: Application to Exploratory Multi-way Data Analysis and Blind Separation. Wiley, Hoboken (2009)

    Book  Google Scholar 

  14. Chambolle, A., Pock, T.: A first-order primal-dual algorithm for convex problems with applications to imaging (2010)

    Google Scholar 

  15. Zhu, M., Chan, T.: An efficient primal-dual hybrid gradient algorithm for total variation image restoration, Technical report, UCLA CAM Report 08–34 (2008)

    Google Scholar 

  16. Ekeland, I., Roger, T.: Convex analysis and variational problems, vol. 28. SIAM (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karima El Qate .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

El Qate, K., El Rhabi, M., Hakim, A., Moreau, E., Thirion-Moreau, N. (2018). A Regularized Nonnegative Third Order Tensor decomposition Using a Primal-Dual Projected Gradient Algorithm: Application to 3D Fluorescence Spectroscopy. In: Basu, A., Berretti, S. (eds) Smart Multimedia. ICSM 2018. Lecture Notes in Computer Science(), vol 11010. Springer, Cham. https://doi.org/10.1007/978-3-030-04375-9_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-04375-9_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-04374-2

  • Online ISBN: 978-3-030-04375-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics