Skip to main content

Abstract

The electroencephalogram (EEG) is the fundamental and most common tool used in sleep research. Normal human sleep comprises two states—rapid eye movement (REM) and non-REM (NREM) sleep—that alternate cyclically across the night. Each state presents typical features that can be detected by EEG and polygraphic channels: NREM sleep includes synchronous cortical electroencephalogram elements (sleep spindles, K-complexes, and slow waves) associated with low muscle tonus; in REM sleep, EEG is desynchronized, muscles are atonic, and dreaming is typically reported. A clear appreciation of the physiological characteristics of sleep provides a strong background for understanding clinical conditions in which “normal” characteristics are altered. The goal of this chapter is to define and describe the EEG-based recognizable elements of physiological sleep in humans, with attention to their clinical implications and their significance for better understanding the underlying cerebral mechanisms. Updated theories of sleep features, function and underlying brain circuits are discussed based on advanced neurophysiological techniques. We focus to the normal EEG sleep pattern in young adults as a working baseline pattern. However, normative changes due to aging and other factors are described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lo JC, Dijk D-J, Groeger JA. Comparing the effects of nocturnal sleep and daytime napping on declarative memory consolidation. PLoS One. 2014;9:e108100.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Rechtschaffen A, Kales A. A manual of standardized terminology, techniques and scoring system for sleep stages of human subjects. Oakland, CA: University of California; 1968.

    Google Scholar 

  3. AASM Manual. For the scoring of sleep and associate events. Rules, terminology and technical specifications. Westchester, IL: American Academy of Sleep Medicine; 2007.

    Google Scholar 

  4. Saper CB, Scammell TE, Lu J. Hypothalamic regulation of sleep and circadian rhythms. Nature. 2005;437:1257–63.

    Article  CAS  PubMed  Google Scholar 

  5. Saper CB, Chou TC, Scammell TE. The sleep switch: hypothalamic control of sleep and wakefulness. Trends Neurosci. 2001;24:726–31.

    Article  CAS  PubMed  Google Scholar 

  6. Lo C-C, Chou T, Penzel T, Scammell TE, Strecker RE, Stanley HE, et al. Common scale-invariant patterns of sleep-wake transitions across mammalian species. Proc Natl Acad Sci U S A. 2004;101:17545–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Behn CGD, Brown EN, Scammell TE, Kopell NJ. Mathematical model of network dynamics governing mouse sleep-wake behavior. J Neurophysiol. 2007;97:3828–40.

    Article  PubMed  Google Scholar 

  8. Halász P, Bódizs R. Dynamic NREM sleep regulation models. In: Dynamic structure of NREM sleep. London: Springer; 2013. p. 7–11.

    Chapter  Google Scholar 

  9. Halász P. The role of micro-arousals in the regulation of sleep. Ideggyogyaszati Szle. 2006;59:252–60.

    Google Scholar 

  10. Halász P. The K-complex as a special reactive sleep slow wave—a theoretical update. Sleep Med Rev. 2016;29:34–40.

    Article  PubMed  Google Scholar 

  11. Tononi G, Cirelli C. Sleep and synaptic homeostasis: a hypothesis. Brain Res Bull. 2003;62:143–50.

    Article  PubMed  Google Scholar 

  12. Tononi G, Cirelli C. Sleep and the price of plasticity: from synaptic and cellular homeostasis to memory consolidation and integration. Neuron. 2014;81:12–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Parrino L, Vaudano AE. The resilient brain and the guardians of sleep: new perspectives on old assumptions. Sleep Med Rev. 2018;39:98–107.

    Article  PubMed  Google Scholar 

  14. Takahashi K, Kayama Y, Lin JS, Sakai K. Locus coeruleus neuronal activity during the sleep-waking cycle in mice. Neuroscience. 2010;169:1115–26.

    Article  CAS  PubMed  Google Scholar 

  15. Ruyi Foong, Kai Keng Ang, Chai Quek, Cuntai Guan, Aung Aung Phyo Wai. An analysis on driver drowsiness based on reaction time and EEG band power. 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). IEEE, Milan; 2015 [cited 2018 May 15]. p. 7982–5.

    Google Scholar 

  16. Sekine A, Niiyama Y, Kutsuzawa O, Shimizu T. A negative component superimposed on event-related potentials during light drowsiness. Psychiatry Clin Neurosci. 2001;55:473–8.

    Article  CAS  PubMed  Google Scholar 

  17. Wada Y, Nanbu Y, Koshino Y, Shimada Y, Hashimoto T. Inter- and intrahemispheric EEG coherence during light drowsiness. Clin EEG Electroencephalogr. 1996;27:84–8.

    Article  CAS  Google Scholar 

  18. Vecchio F, Miraglia F, Gorgoni M, Ferrara M, Iberite F, Bramanti P, et al. Cortical connectivity modulation during sleep onset: a study via graph theory on EEG data. Hum Brain Mapp. 2017;38:5456–64.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Goldie L, Green JM. Paradoxical blocking and arousal in the drowsy state. Nature. 1960;187:952–3.

    Article  CAS  PubMed  Google Scholar 

  20. Niedermeyer E, Pribram HF. Unilateral suppression of vertex sharp waves in the sleep electroencephalogram (case report). Electroencephalogr Clin Neurophysiol. 1966;20:401–4.

    Article  CAS  PubMed  Google Scholar 

  21. Chang BS, Schomer DL, Niedermayer E. Normal EEG and sleep; adults and elderly. In: Schomer DL, Lopes de Silva FH, editors. Niedermeyer’s electroencephalography: basic principles, clinical applications and related fields. Philadelphia, PA: Lippincott Williams & Wilkins; 2010. p. 183–214.

    Google Scholar 

  22. Colrain IM, Campbell KB. The use of evoked potentials in sleep research. Sleep Med Rev. 2007;11:277–93.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Bastien CH, Crowley KE, Colrain IM. Evoked potential components unique to non-REM sleep: relationship to evoked K-complexes and vertex sharp waves. Int J Psychophysiol. 2002;46:257–74.

    Article  PubMed  Google Scholar 

  24. Gora J, Colrain IM, Trinder J. The investigation of K-complex and vertex sharp wave activity in response to mid-inspiratory occlusions and complete obstructions to breathing during NREM sleep. Sleep. 2001;24:81–9.

    Article  CAS  PubMed  Google Scholar 

  25. Lu ST, Kajola M, Joutsiniemi SL, Knuutila J, Hari R. Generator sites of spontaneous MEG activity during sleep. Electroencephalogr Clin Neurophysiol. 1992;82:182–96.

    Article  CAS  PubMed  Google Scholar 

  26. Stern JM, Caporro M, Haneef Z, Yeh HJ, Buttinelli C, Lenartowicz A, et al. Functional imaging of sleep vertex sharp transients. Clin Neurophysiol. 2011;122:1382–6.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Grigg-Damberger M, Gozal D, Marcus CL, Quan SF, Rosen CL, Chervin RD, et al. The visual scoring of sleep and arousal in infants and children. J Clin Sleep Med. 2007;3:201–40.

    Article  PubMed  Google Scholar 

  28. Hughes JR. The development of the vertex sharp transient. Clin EEG Electroencephalogr. 1998;29:183–7.

    Article  CAS  Google Scholar 

  29. Rey V, Aybek S, Maeder-Ingvar M, Rossetti AO. Positive occipital sharp transients of sleep (POSTS): a reappraisal. Clin Neurophysiol. 2009;120:472–5.

    Article  PubMed  Google Scholar 

  30. Pristasová E, Procházka M, Cigánek L. Theta rhythms and positive bioccipital waves in the EEG during sleep. Psychiatr Neurol Med Psychol (Leipz). 1983;35:656–60.

    Google Scholar 

  31. Hughes JR, Means ED, Stell BS. A controlled study on the behavior disorders associated with the positive spike phenomenon. Electroencephalogr Clin Neurophysiol. 1965;18:349–53.

    Article  CAS  PubMed  Google Scholar 

  32. Saito M, Ishida T, Nakamura M, Ihara M, Murase I. Factors affecting the occurrence of high-frequency positive occipital sharp transients of sleep. Keio J Med. 2003;52:25–9.

    Article  PubMed  Google Scholar 

  33. Vignaendra V, Matthews RL, Chatrian GE. Positive occipital sharp transients of sleep: relationships to nocturnal sleep cycle in man. Electroencephalogr Clin Neurophysiol. 1974;37:239–46.

    Article  CAS  PubMed  Google Scholar 

  34. Brenner RP, Zauel DW, Carlow TJ. Positive occipital sharp transients of sleep in the blind. Neurology. 1978;28:609–12.

    Article  CAS  PubMed  Google Scholar 

  35. Loomis AL, Harvey EN, Hobart GA. Distribution of disturbance-patterns in the human electroencephalogram, with special reference to sleep. J Neurophysiol. 1938;1:413–30.

    Article  Google Scholar 

  36. Cote KA, de Lugt DR, Langley SD, Campbell KB. Scalp topography of the auditory evoked K-complex in stage 2 and slow wave sleep. J Sleep Res. 1999;8:263–72.

    Article  CAS  PubMed  Google Scholar 

  37. Colrain IM. The K-complex: a 7-decade history. Sleep. 2005;28:255–73.

    Article  PubMed  Google Scholar 

  38. Colrain IM, Sullivan EV, Rohlfing T, Baker FC, Nicholas CL, Padilla ML, et al. Independent contributions of cortical gray matter, aging, sex and alcoholism to K-complex amplitude evoked during sleep. Sleep. 2011;34:787–95.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Curcio G, Ferrara M, Pellicciari MC, Cristiani R, De Gennaro L. Effect of total sleep deprivation on the landmarks of stage 2 sleep. Clin Neurophysiol. 2003;114:2279–85.

    Article  PubMed  Google Scholar 

  40. Steriade M. Neuronal substrates of sleep and epilepsy. Cambridge; New York: Cambridge University Press; 2003.

    Google Scholar 

  41. Halász P, Terzano M, Parrino L, Bódizs R. The nature of arousal in sleep. J Sleep Res. 2004;13:1–23.

    Article  PubMed  Google Scholar 

  42. Riedner BA, Hulse BK, Murphy MJ, Ferrarelli F, Tononi G. Temporal dynamics of cortical sources underlying spontaneous and peripherally evoked slow waves. Prog Brain Res. 2011;193:201–18.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Tank J, Diedrich A, Hale N, Niaz FE, Furlan R, Robertson RM, et al. Relationship between blood pressure, sleep K-complexes, and muscle sympathetic nerve activity in humans. Am J Physiol Regul Integr Comp Physiol. 2003;285:R208–14.

    Article  CAS  PubMed  Google Scholar 

  44. Niiyama Y, Satoh N, Kutsuzawa O, Hishikawa Y. Electrophysiological evidence suggesting that sensory stimuli of unknown origin induce spontaneous K-complexes. Electroencephalogr Clin Neurophysiol. 1996;98:394–400.

    Article  CAS  PubMed  Google Scholar 

  45. Roth M, Shaw J, Green J. The form voltage distribution and physiological significance of the K-complex. Electroencephalogr Clin Neurophysiol. 1956;8:385–402.

    Article  CAS  PubMed  Google Scholar 

  46. Sallinen M, Kaartinen J, Lyytinen H. Precursors of the evoked K-complex in event-related brain potentials in stage 2 sleep. Electroencephalogr Clin Neurophysiol. 1997;102:363–73.

    Article  CAS  PubMed  Google Scholar 

  47. Laurino M, Menicucci D, Piarulli A, Mastorci F, Bedini R, Allegrini P, et al. Disentangling different functional roles of evoked K-complex components: mapping the sleeping brain while quenching sensory processing. NeuroImage. 2014;86:433–45.

    Article  PubMed  Google Scholar 

  48. Nicholas CL, Trinder J, Colrain IM. Increased production of evoked and spontaneous K-complexes following a night of fragmented sleep. Sleep. 2002;25:882–7.

    Article  PubMed  Google Scholar 

  49. Halász P. Hierarchy of micro-arousals and the microstructure of sleep. Neurophysiol Clin. 1998;28:461–75.

    Article  PubMed  Google Scholar 

  50. Crowley K, Trinder J, Kim Y, Carrington M, Colrain IM. The effects of normal aging on sleep spindle and K-complex production. Clin Neurophysiol. 2002;113:1615–22.

    Article  PubMed  Google Scholar 

  51. Colrain IM, Crowley KE, Nicholas CL, Afifi L, Baker FC, Padilla M, et al. Sleep evoked delta frequency responses show a linear decline in amplitude across the adult lifespan. Neurobiol Aging. 2010;31:874–83.

    Article  PubMed  Google Scholar 

  52. Mölle M, Bergmann TO, Marshall L, Born J. Fast and slow spindles during the sleep slow oscillation: disparate coalescence and engagement in memory processing. Sleep. 2011;34:1411–21.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Andrillon T, Nir Y, Staba RJ, Ferrarelli F, Cirelli C, Tononi G, et al. Sleep spindles in humans: insights from intracranial EEG and unit recordings. J Neurosci. 2011;31:17821–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Nader RS, Smith CT. Correlations between adolescent processing speed and specific spindle frequencies. Front Hum Neurosci. 2015;9:30.

    Article  PubMed  PubMed Central  Google Scholar 

  55. De Gennaro L, Ferrara M. Sleep spindles: an overview. Sleep Med Rev. 2003;7:423–40.

    Article  PubMed  Google Scholar 

  56. Lüthi A. Sleep spindles: where they come from, what they do. Neurosci Rev J Bring Neurobiol Neurol Psychiatry. 2014;20:243–56.

    Google Scholar 

  57. Astori S, Wimmer RD, Lüthi A. Manipulating sleep spindles—expanding views on sleep, memory, and disease. Trends Neurosci. 2013;36:738–48.

    Article  CAS  PubMed  Google Scholar 

  58. Schabus M, Dang-Vu TT, Albouy G, Balteau E, Boly M, Carrier J, et al. Hemodynamic cerebral correlates of sleep spindles during human non-rapid eye movement sleep. Proc Natl Acad Sci U S A. 2007;104:13164–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Ayoub A, Aumann D, Hörschelmann A, Kouchekmanesch A, Paul P, Born J, et al. Differential effects on fast and slow spindle activity, and the sleep slow oscillation in humans with carbamazepine and flunarizine to antagonize voltage-dependent Na+ and Ca2+ channel activity. Sleep. 2013;36:905–11.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Clawson BC, Durkin J, Aton SJ. Form and function of sleep spindles across the lifespan. Neural Plast. 2016;2016:6936381.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Hagne I. Development of the EEG in normal infants during the first year of life. A longitudinal study. Acta Paediatr Scand Suppl. 1972;232:1–53.

    CAS  PubMed  Google Scholar 

  62. Gaillard J-M, Baudat J, Blois R. The effect of sex depressive state and minor tranquilizers on K potentials and spindles during sleep. Clin Neurol Neurosurg. 1987;89:172–3.

    Google Scholar 

  63. Mölle M, Marshall L, Gais S, Born J. Learning increases human electroencephalographic coherence during subsequent slow sleep oscillations. Proc Natl Acad Sci U S A. 2004;101:13963–8.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Massimini M, Huber R, Ferrarelli F, Hill S, Tononi G. The sleep slow oscillation as a traveling wave. J Neurosci. 2004;24:6862–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Nir Y, Mukamel R, Dinstein I, Privman E, Harel M, Fisch L, et al. Interhemispheric correlations of slow spontaneous neuronal fluctuations revealed in human sensory cortex. Nat Neurosci. 2008;11:1100–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Mander BA, Winer JR, Walker MP. Sleep and Human Aging. Neuron. 2017;94:19–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Vijayan S, Klerman EB, Adler GK, Kopell NJ. Thalamic mechanisms underlying alpha-delta sleep with implications for fibromyalgia. J Neurophysiol. 2015;114:1923–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Van Hoof E, De Becker P, Lapp C, Cluydts R, De Meirleir K. Defining the occurrence and influence of alpha-delta sleep in chronic fatigue syndrome. Am J Med Sci. 2007;333:78–84.

    Article  PubMed  Google Scholar 

  69. Jaimchariyatam N, Rodriguez CL, Budur K. Prevalence and correlates of alpha-delta sleep in major depressive disorders. Innov Clin Neurosci. 2011;8:35–49.

    PubMed  PubMed Central  Google Scholar 

  70. Scheuler W, Kubicki S, Marquardt J, Scholz G, Weiβ KH, Henkes H, et al. The alpha-sleep pattern—quantitative analysis and functional aspects. In: Koella WP, Obal F, Schulz H, Visser P, editors. Sleep, vol. 1988. Stuttgart: Fischer; 1986.

    Google Scholar 

  71. Steriade M, Contreras D, Curró Dossi R, Nuñez A. The slow (<1 Hz) oscillation in reticular thalamic and thalamocortical neurons: scenario of sleep rhythm generation in interacting thalamic and neocortical networks. J Neurosci. 1993;13:3284–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Steriade M, Timofeev I, Grenier F. Natural waking and sleep states: a view from inside neocortical neurons. J Neurophysiol. 2001;85:1969–85.

    Article  CAS  PubMed  Google Scholar 

  73. Timofeev I, Grenier F, Bazhenov M, Sejnowski TJ, Steriade M. Origin of slow cortical oscillations in deafferented cortical slabs. Cereb Cortex. 2000;10:1185–99.

    Article  CAS  PubMed  Google Scholar 

  74. Sanchez-Vives MV, McCormick DA. Cellular and network mechanisms of rhythmic recurrent activity in neocortex. Nat Neurosci. 2000;3:1027–34.

    Article  CAS  PubMed  Google Scholar 

  75. Bazhenov M, Timofeev I, Steriade M, Sejnowski TJ. Model of thalamocortical slow-wave sleep oscillations and transitions to activated states. J Neurosci. 2002;22:8691–704.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Compte A, Sanchez-Vives MV, McCormick DA, Wang X-J. Cellular and network mechanisms of slow oscillatory activity (<1 Hz) and wave propagations in a cortical network model. J Neurophysiol. 2003;89:2707–25.

    Article  PubMed  Google Scholar 

  77. Timofeev I, Steriade M. Low-frequency rhythms in the thalamus of intact-cortex and decorticated cats. J Neurophysiol. 1996;76:4152–68.

    Article  CAS  PubMed  Google Scholar 

  78. Shu Y, Hasenstaub A, McCormick DA. Turning on and off recurrent balanced cortical activity. Nature. 2003;423:288–93.

    Article  CAS  PubMed  Google Scholar 

  79. Caporro M, Haneef Z, Yeh HJ, Lenartowicz A, Buttinelli C, Parvizi J, et al. Functional MRI of sleep spindles and K-complexes. Clin Neurophysiol. 2012;123:303–9.

    Article  PubMed  Google Scholar 

  80. Jahnke K, von Wegner F, Morzelewski A, Borisov S, Maischein M, Steinmetz H, et al. To wake or not to wake? The two-sided nature of the human K-complex. NeuroImage. 2012;59:1631–8.

    Article  PubMed  Google Scholar 

  81. Riedner BA, Vyazovskiy VV, Huber R, Massimini M, Esser S, Murphy M, et al. Sleep homeostasis and cortical synchronization: III. A high-density EEG study of sleep slow waves in humans. Sleep. 2007;30:1643–57.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Tononi G, Cirelli C. Sleep function and synaptic homeostasis. Sleep Med Rev. 2006;10:49–62.

    Article  PubMed  Google Scholar 

  83. Esser SK, Hill SL, Tononi G. Sleep homeostasis and cortical synchronization: I. Modeling the effects of synaptic strength on sleep slow waves. Sleep. 2007;30:1617–30.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Vyazovskiy VV, Riedner BA, Cirelli C, Tononi G. Sleep homeostasis and cortical synchronization: II. A local field potential study of sleep slow waves in the rat. Sleep. 2007;30:1631–42.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Vyazovskiy VV, Olcese U, Lazimy YM, Faraguna U, Esser SK, Williams JC, et al. Cortical firing and sleep homeostasis. Neuron. 2009;63:865–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Colrain IM, Baker FC. Changes in sleep as a function of adolescent development. Neuropsychol Rev. 2011;21:5–21.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Ringli M, Huber R. Developmental aspects of sleep slow waves: linking sleep, brain maturation and behavior. Prog Brain Res. 2011;193:63–82.

    Article  PubMed  Google Scholar 

  88. Kurth S, Ringli M, Geiger A, LeBourgeois M, Jenni OG, Huber R. Mapping of cortical activity in the first two decades of life: a high-density sleep electroencephalogram study. J Neurosci. 2010;30:13211–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Feinberg I, Campbell IG. Sleep EEG changes during adolescence: an index of a fundamental brain reorganization. Brain Cogn. 2010;72:56–65.

    Article  PubMed  Google Scholar 

  90. Matsuo F. Recognition of REM sleep in standard EEG. Electroencephalogr Clin Neurophysiol. 1981;52:490–3.

    Article  CAS  PubMed  Google Scholar 

  91. Jouvet M, Michel F, Mounier D. Analyse électroencépholographique comparée du sommeil physiologique chez le chat et chez l’homme. Revue Neurologique. 1960;103:189D–205D.

    Google Scholar 

  92. Berger RJ, Olley P, Oswald I. The EEC, eye-movements and dreams of the blind. Q J Exp Psychol. 1962;14:183–6.

    Article  Google Scholar 

  93. Yasoshima A, Hayashi H, Iijima S, Sugita Y, Teshima Y, Shimizu T, et al. Potential distribution of vertex sharp wave and saw-toothed wave on the scalp. Electroencephalogr Clin Neurophysiol. 1984;58:73–6.

    Article  CAS  PubMed  Google Scholar 

  94. Broughton R, Hasan J. Quantitative topographic electroencephalographic mapping during drowsiness and sleep onset. J Clin Neurophysiol. 1995;12:372–86.

    Article  CAS  PubMed  Google Scholar 

  95. Curzi-Dascalova L. Waking and sleeping E.E.G. in normal babies before 6 months of age (author’s transl). Rev Electroencephalogr Neurophysiol Clin. 1977;7:316–26.

    Article  CAS  PubMed  Google Scholar 

  96. Pearl PL, LaFleur BJ, Reigle SC, Rich AS, Freeman AAH, McCutchen C, et al. Sawtooth wave density analysis during REM sleep in normal volunteers. Sleep Med. 2002;3:255–8.

    Article  PubMed  Google Scholar 

  97. Sato S, McCutchen C, Graham B, Freeman A, von Albertini-Carletti I, Alling DW. Relationship between muscle tone changes, sawtooth waves and rapid eye movements during sleep. Electroencephalogr Clin Neurophysiol. 1997;103:627–32.

    Article  CAS  PubMed  Google Scholar 

  98. Takahara M, Kanayama S, Hori T. Co-occurrence of sawtooth waves and rapideye movements during REM sleep. Int J Bioelectromagn. 2009;11:144–8.

    Google Scholar 

  99. Kober SE, Wood G, Kampl C, Neuper C, Ischebeck A. Electrophysiological correlates of mental navigation in blind and sighted people. Behav Brain Res. 2014;273:106–15.

    Article  PubMed  Google Scholar 

  100. Balzamo E. States of wakefulness and ponto-geniculo-cortical activities (PGC) in Papio anubis (author’s transl). Electroencephalogr Clin Neurophysiol. 1980;48:694–705.

    Article  CAS  PubMed  Google Scholar 

  101. Siegel H, McCutchen C, Dalakas MC, Freeman A, Graham B, Alling D, et al. Physiologic events initiating REM sleep in patients with the postpolio syndrome. Neurology. 1999;52:516–22.

    Article  CAS  PubMed  Google Scholar 

  102. Oksenberg A, Gordon C, Arons E, Sazbon L. Phasic activities of rapid eye movement sleep in vegetative state patients. Sleep. 2001;24:703–6.

    Article  CAS  PubMed  Google Scholar 

  103. Bassetti CL, Aldrich MS. Sleep electroencephalogram changes in acute hemispheric stroke. Sleep Med. 2001;2:185–94.

    Article  PubMed  Google Scholar 

  104. Vega-Bermudez F, Szczepanski S, Malow B, Sato S. Sawtooth wave density analysis during REM sleep in temporal lobe epilepsy patients. Sleep Med. 2005;6:367–70.

    Article  PubMed  Google Scholar 

  105. Terzano MG, Parrino L, Mennuni GF. Associazione Italiana di Medicina del Sonno, editors. Eventi fasici e microstruttura del sonno = phasic events and microstructure of sleep. Martano: Lecce; 1997.

    Google Scholar 

  106. Terzano MG, Parrino L. Origin and significance of the cyclic alternating pattern (CAP). Sleep Med Rev. 2000;4:101–23.

    Article  PubMed  Google Scholar 

  107. Terzano MG, Mancia D, Salati MR, Costani G, Decembrino A, Parrino L. The cyclic alternating pattern as a physiologic component of normal NREM sleep. Sleep. 1985;8:137–45.

    Article  CAS  PubMed  Google Scholar 

  108. Bonnet MH, Carley DW, Carskadon MA, Easton PA, Guilleminault C, Harper RM, et al. EEG arousals: scoring rules and examples: a preliminary report from the Sleep Disorders Atlas Task Force of the American Sleep Disorders Association. Sleep. 1992;15:173–84.

    Article  Google Scholar 

  109. Ferri R, Bruni O, Miano S, Terzano MG. Topographic mapping of the spectral components of the cyclic alternating pattern (CAP). Sleep Med. 2005;6:29–36.

    Article  PubMed  Google Scholar 

  110. Parrino L, Ferri R, Bruni O, Terzano MG. Cyclic alternating pattern (CAP): the marker of sleep instability. Sleep Med Rev. 2012;16:27–45.

    Article  PubMed  Google Scholar 

  111. Terzano MG, Parrino L, Fioriti G, Spaggiari MC, Piroli A. Morphologic and functional features of cyclic alternating pattern (CAP) sequences in normal NREM sleep. Funct Neurol. 1986;1:29–41.

    CAS  PubMed  Google Scholar 

  112. Parrino L, Boselli M, Spaggiari MC, Smerieri A, Terzano MG. Cyclic alternating pattern (CAP) in normal sleep: polysomnographic parameters in different age groups. Electroencephalogr Clin Neurophysiol. 1998;107:439–50.

    Article  CAS  PubMed  Google Scholar 

  113. Bruni O, Ferri R, Miano S, Verrillo E, Vittori E, Della Marca G, et al. Sleep cyclic alternating pattern in normal school-age children. Clin Neurophysiol. 2002;113:1806–14.

    Article  PubMed  Google Scholar 

  114. Bruni O, Ferri R, Miano S, Verrillo E, Vittori E, Farina B, et al. Sleep cyclic alternating pattern in normal preschool-aged children. Sleep. 2005;28:220–30.

    Article  PubMed  Google Scholar 

  115. Lopes MC, Rosa A, Roizenblatt S, Guilleminault C, Passarelli C, Tufik S, et al. Cyclic alternating pattern in peripubertal children. Sleep. 2005;28:215–9.

    Article  PubMed  Google Scholar 

  116. Miano S, PiaVilla M, Blanco D, Zamora E, Rodriguez R, Ferri R, et al. Development of NREM sleep instability-continuity (cyclic alternating pattern) in healthy term infants aged 1 to 4 months. Sleep. 2009;32:83–90.

    Article  PubMed  PubMed Central  Google Scholar 

  117. Boselli M, Parrino L, Smerieri A, Terzano MG. Effect of age on EEG arousals in normal sleep. Sleep. 1998;21:351–7.

    CAS  PubMed  Google Scholar 

  118. Carskadon M, Keenan S, Dement WC. Nighttime sleep and daytime sleep tendency in preadolescents. In: Guilleminault C, editor. Sleep and its disorders in children. New York: Raven Press; 1987.

    Google Scholar 

  119. Bruni O, Ferri R, Vittori E, Novelli L, Vignati M, Porfirio MC, et al. Sleep architecture and NREM alterations in children and adolescents with Asperger syndrome. Sleep. 2007;30:1577–85.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Cite this chapter

Vaudano, A.E., Azzi, N., Trippi, I. (2019). Normal Sleep EEG. In: Mecarelli, O. (eds) Clinical Electroencephalography. Springer, Cham. https://doi.org/10.1007/978-3-030-04573-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-04573-9_10

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-04572-2

  • Online ISBN: 978-3-030-04573-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics