Skip to main content

Abstract

In the first part of this chapter, the principal characteristics of electroencephalographic (EEG) signals (morphology, amplitude, location, rhythmicity, symmetry, etc.) and the wide spectrum of EEG frequencies, grouped in bands, are described. In the second part, the physiological rhythms and the normal graphoelements of the waking adult EEG are detailed, with particular reference to the alpha and mu rhythms. Finally, the intra- and interindividual variability, the aging effects on EEG and the concept of EEG normality are briefly discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Walter WG. The location of cerebral tumours by electroencephalography. Lancet. 1936;II:305–8.

    Article  Google Scholar 

  2. Vanhatalo S, Voipio J, Kaila K. Infraslow EEG activity. In: Schomer DL, Lopes da Silva FH, editors. Electroencephalography. Basic principles, clinical applications, and related fields. 6th ed. Philadelphia: Lippincott Williams & Wilkins; 2011. p. 741–8.

    Google Scholar 

  3. Walter WG, Dovey VJ. Electroencephalography in cases of subcortical tumours. J Neurol Neurosurg Psychiatry. 1944;7:57–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Berger H. Uber das Elektrenkephalogramm des Menschen. Arch Psychiatr Nervenkr. 1929;87:527–70.

    Article  Google Scholar 

  5. Curio G. Ultrafast EEG activities. In: Niedermeyer E, Lopes Da Silva F, editors. Electroencephalography. Basic principles, clinical applications, and related fields. 5th ed. Philadelphia: Lippincott Williams & Wilkins; 2005. p. 495–504.

    Google Scholar 

  6. Frauscher B, Bartolomei F, Kobayashi K, et al. High frequency oscillations: the state of clinical research. Epilepsia. 2017;58:1316–29.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Zijmans M, Worrell GA, Dumpelmann M, et al. How to record high-frequency oscillations in epilepsy: a practical guideline. Epilepsia. 2017;58:495–504.

    Google Scholar 

  8. Adrian ED, Mathews BHC. The Berger rhythm: potential changes from the occipital lobes in man. Brain. 1934;57:355–85.

    Article  Google Scholar 

  9. Kane N, Acharya J, Benickzy S, et al. A revised glossary of terms most commonly used by clinical electroencephalographers and updated proposal for the report format of the EEG findings. Clin Neurophysiol Pract. 2017;2:170–85.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Kriegseis A, Henninhausen E, Rosler F, Roder B. Reduced EEG alpha activity over parieto-occipital brain areas in congenitally blind adults. Clin Neurophysiol. 2006;117:1560–73.

    Article  PubMed  Google Scholar 

  11. Harding GFA. Thompson CRS. EEG rhythms and the internal milieu. In: Remond A, editor. Handbook of electroencephalography and clinical neurophysiology, vol. 6A. Amsterdam: Elsevier; 1976. p. 176–94.

    Google Scholar 

  12. Chang BS, Schomer DL, Niedermeyer E. Normal EEG and sleep: adults and elderly. In: Schomer DL, Lopes da Silva FH, editors. Electroencephalography. Basic principles, clinical applications, and related fields. 6th ed. Philadelphia: Lippincott Williams & Wilkins; 2011. p. 183–214.

    Google Scholar 

  13. Tatum WO IV. Normal adult EEG. In: Ebersole JS, editor. Current practice of clinical electroencephalography. 4th ed. Philadelphia: Wolters Kluwer Health; 2014. p. 90–124.

    Google Scholar 

  14. Meritam P, Gardella E, Alving J, et al. Diagnostic yield of standard-wake and sleep EEG recordings. Clin Neurophysiol. 2018;129:713–6.

    Article  PubMed  Google Scholar 

  15. Stom van Leeuwen W, Bekkering DH. Some results obtained with the EEG-spectrograph. Electroencephalogr Clin Neurophysiol. 1958;10:563–70.

    Article  Google Scholar 

  16. Cooper R, Binnie C, Billings R. Techniques in clinical neurophysiology. EEG phenomenology. Amsterdam: Elsevier; 2003. p. 169–221.

    Google Scholar 

  17. Kuhlo W. Slow posterior activities. In: Chatrian GE, Lairy GC, editors. The EEG of waking adult. Handbook of electroencephalography and clinical neurophysiology, vol. 6A. Amsterdam: Elsevier; 1976. p. 89–104.

    Google Scholar 

  18. Libenson MH. Visual analysis of the EEG: wakefulness, drowsiness and sleep. In: Libenson MH, editor. Practical approach to electroencephalography. Philadelphia: Saunders Elsevier; 2010. p. 5–30.

    Google Scholar 

  19. Krishnan V, Chang BS, Schomer DL. Normal EEG in wakefulness and sleep: adults. and elderly. In: Schomer DL, Lopes da Silva FH, editors. Neidermeyer’s electroencephalography. Basic principles, clinical applications, and related fields. Oxford: Oxford University Press; 2018. p. 202–28.

    Google Scholar 

  20. Niedermeyer E, Krauss GL, Peyser CE. The electroencephalogram and mental activation. Clin Electroencephalogr. 1989;20:215–26.

    Article  CAS  PubMed  Google Scholar 

  21. Bishop GH. The interpretation of cortical potentials. Cold Spring Harb Symp Quant Biol. 1936;4:305–19.

    Article  Google Scholar 

  22. Andersen P, Andersson SA. Physiological basis of the alpha rhythm, Neuroscience series, vol. 1. New York: Appleton Century Crofts; 1968: 235p.

    Google Scholar 

  23. Steriade M, Gloor P, Llinas RR, et al. Basic mechanisms of cerebral rhythmic activities. Electroencephalogr Clin Neurophysiol. 1990;76:481–508.

    Article  CAS  PubMed  Google Scholar 

  24. Gastaut H. Etude électrocorticographique de la réactivité des rythmes rolandiques. Rev Neurol. 1952;87:176–82.

    CAS  PubMed  Google Scholar 

  25. Yamak R, Beydoun AA, Dirani MM, et al. Unilateral mu rhythm and associated cortical lesions on brain MRI. J Clin Neurophysiol. 2017;34:144–50.

    Article  PubMed  Google Scholar 

  26. Chatrian GE. The mu rhythm. In: Remond A, editor. Handbook of electroencephalography and clinical neurophysiology, vol. 6. Amsterdam: Elsevier; 1976. p. 46–69.

    Google Scholar 

  27. Gastaut H, Naquet R, Gastaut Y. A study of the mu rhythm in subjects lacking one or more limbs. Electroencephalogr Clin Neurophysiol. 1965;18:720–1.

    Article  Google Scholar 

  28. Jasper HH, Penfield W. Electrocorticograms in man: effects of voluntary movement upon the electrical activity of the precentral gyrus. Arch Psychiatr Nervenkr. 1949;183:163–74.

    Article  Google Scholar 

  29. Pineda JA. The functional significance of mu rhythms: translating “seing” and “hearing” into “doing”. Brain Res Rev. 2005;50:57–68.

    Article  PubMed  Google Scholar 

  30. Cobb WA, Guiloff RJ, Cast J. Breach rhythm: the EEG related to skull defects. Electroencephalogr Clin Neurophysiol. 1979;47:251–71.

    Article  CAS  PubMed  Google Scholar 

  31. Brigo F, Cicero R, Fiaschi A, Bongiovanni LG. The breach rhythm. Clin Neurophysiol. 2011;122:2116–20.

    Article  PubMed  Google Scholar 

  32. Benbadis SR, Tatum WO. Overinterpretation of EEGs and misdiagnosis of epilepsy. J Clin Neurophysiol. 2003;20:42–4.

    Article  PubMed  Google Scholar 

  33. Chatrian GE. The lambda waves. In: Remond A, editor. Handbook of electroencephalography and clinical neurophysiology, vol. 6A. Amsterdam: Elsevier; 1976. p. 123–49.

    Google Scholar 

  34. Billings RJ. The origin of the occipital lambda wave in man. Electroencephalogr Clin Neurophysiol. 1989;72:95–113.

    Article  CAS  PubMed  Google Scholar 

  35. Alvarez V, Maeder-Ingvar M, Rossetti A. Watching television: a previously unrecognized powerful trigger of lambda waves. J Clin Neurophysiol. 2011;28:400–3.

    Article  PubMed  Google Scholar 

  36. Shaw JC. The Brain’s alpha rhythms and the mind. Amsterdam: Elsevier; 2003.

    Google Scholar 

  37. Matsuura M, Yamamoto K, Fukuzawa H, et al. Age development and sex differences of various EEG elements in healthy children and adults. Electroencephalogr Clin Neurophysiol. 1985;60:394–406.

    Article  CAS  PubMed  Google Scholar 

  38. Ehlers CL, Kupfer DJ, Buysse DJ, et al. The Pittsburgh study of normal EEG sleep in young adults: focus on the relationship between waking and sleeping EEG spectral patterns. Electroencephalogr Clin Neurophysiol. 1998;106:199–205.

    Article  CAS  PubMed  Google Scholar 

  39. Petersen I, Eeg-Olofsson O. The development of the electroencephalogram in normal children from the age of 1 through 15 years. Neuropediatrie. 1971;2:247–304.

    Article  CAS  Google Scholar 

  40. Eeg-Olofsson O, Petersen I, Selden U. The development of the electroencephalogram in normal children from the age of 1 through 15 years. Paroxysmal activity. Neuropaediatrie. 1971;2:375–404.

    Article  CAS  Google Scholar 

  41. Eeg-Olofson. The development of the electroencephalogram in normal adolescents from the age of 16 through 21 years. Neuropaediatrie. 1971;3:11–45.

    Article  Google Scholar 

  42. Duffy FH, Albert MS, McAnuty G, Garvey AJ. Age-related differences in brain electrical activity of healthy subjects. Ann Neurol. 1984;16:430–8.

    Article  CAS  PubMed  Google Scholar 

  43. Marcuse LV, Schneider M, Mortati KA, et al. Quantitative analysis of the posterior-dominant rhythm in healthy adolescents. Clin Neurophysiol. 2008;119:1778–81.

    Article  CAS  PubMed  Google Scholar 

  44. Wang HS, Busse EW. EEG of healthy old persons. A longitudinal study. I. Dominant background activity and occipital rhythm. J Gerontol. 1969;24:419–26.

    Article  CAS  PubMed  Google Scholar 

  45. Giaquinto S, Nolfe G. The EEG in the normal elderly: a contribution to the interpretation of aging and dementia. Electroencephalogr Clin Neurophysiol. 1986;63:540–6.

    Article  CAS  PubMed  Google Scholar 

  46. Klass DW, Brenner RP. Electroencephalography of the elderly. J Clin Neurophysiol. 1995;12:116–31.

    Article  CAS  PubMed  Google Scholar 

  47. Rossini PM, Rossi S, Babiloni C, et al. Clinical neurophysiology of aging brain: from normal aging to neurodegeneration. Prog Neurobiol. 2007;83:375–400.

    Article  CAS  PubMed  Google Scholar 

  48. Benbadis SR. Errors in EEGs and the misdiagnosis of epilepsy: importance, causes, consequences, and proposed remedies. Epilepsy Behav. 2007;11:257–62.

    Article  PubMed  Google Scholar 

  49. Williams GW, Luders HO, Brickner A, et al. Interobserver variability in EEG interpretation. Neurology. 1985;35:1714–9.

    Article  CAS  PubMed  Google Scholar 

  50. Halford JJ, Arain A, Kalamangalam GP, et al. Characteristics of EEG interpreters associated with higher interrater agreement. J Clin Neurophysiol. 2017;34:168–73.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Beniczky S, Aurlien H, Brogger JC, et al. Standardized computer-based organized reporting of EEG: SCORE—second version. Clin Neurophysiol. 2017;128:2334–46.

    Article  PubMed  Google Scholar 

Download references

Acknowledgment

I am grateful to neurophysiologist Dr Patrizia Pulitano for her help in selecting and editing the EEG figures and to neurologist Dr Edoardo Vicenzini in editing the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oriano Mecarelli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Cite this chapter

Mecarelli, O. (2019). Normal Awake Adult EEG. In: Mecarelli, O. (eds) Clinical Electroencephalography. Springer, Cham. https://doi.org/10.1007/978-3-030-04573-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-04573-9_9

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-04572-2

  • Online ISBN: 978-3-030-04573-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics