Skip to main content

Randomization in Robustness, Estimation, and Optimization

  • Chapter
  • First Online:
Uncertainty in Complex Networked Systems

Part of the book series: Systems & Control: Foundations & Applications ((SCFA))

Abstract

This is an attempt to discuss the following question: When is a random choice better than a deterministic one? That is, if we have an original deterministic setup, is it wise to exploit randomization methods for its solution? There exist numerous situations where the positive answer is obvious; e.g., stochastic strategies in games, randomization in experiment design, randomization of inputs in identification. Another type of problems where such approach works successfully relates to treating uncertainty, see Tempo R., Calafiore G., Dabbene F., “Randomized algorithms for analysis and control of uncertain systems,” Springer, New York, 2013. We will try to focus on several research directions including optimization problems with no uncertainty and compare known deterministic methods with their stochastic counterparts such as random descent, various versions of Monte Carlo etc., for convex and global optimization. We survey some recent results in the field and ascertain that the situation can be very different.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Agmon, S.: The relaxation method for linear inequalities. Canad. J. Math. 6, 382–393 (1954)

    Article  MathSciNet  MATH  Google Scholar 

  2. Barmish, B.R., Lagoa, C.M.: The uniform distribution: A rigorous justification for its use in robustness analysis. Math. Control Sign. Syst. 10(3), 203–222 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  3. Barmish, B., Polyak, B.: A new approach to open robustness problems based on probabilistic prediction formulae. In: Proc. 13th World Congress of IFAC. San Francisco, H, 1–6 (1996)

    Google Scholar 

  4. Barmish, B.R., Shcherbakov, P.S.: On avoiding vertexization of robustness problems: The approximate feasibility concept. In: Proc. 39th Conference on Decision and Control, Sydney, Australia (2000)

    Google Scholar 

  5. Barmish, B.R., Shcherbakov, P.S.: On avoiding vertexization of robustness problems: The approximate feasibility concept. IEEE Transa Autom. Control 47(5), 819–824 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  6. Barmish, B.R., Shcherbakov, P.S., Ross, S.R., Dabbene, F.: On positivity of polynomials: The dilation integral method. IEEE Transa Autom. Control 54(5), 965–978 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bauschke, H.H., Borwein, J.M.: On projection algorithms for solving convex feasibility problems. SIAM Review 38(3):367–426 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  8. Ben-Tal, A., Nemirovski, A.: Robust convex optimization. Math. Oper. Res. 23(4), 769–805 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bertsekas, D.P., Tsitsiklis, J.N.: Parallel and Distributed Computation. Prentice Hall Inc. (1989)

    Google Scholar 

  10. Boyd, S., El Ghaoui, L., Feron, E., Balakrishnan, V.: Linear Matrix Inequalities in Systems and Control Theory. SIAM Publ., Philadelphia (1994)

    Book  MATH  Google Scholar 

  11. Calafiore, G., Campi, M.C.: Uncertain convex programs: Randomized solutions and confidence levels. Math. Prog. 201(1), 25–46 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  12. Calafiore, G., Campi, M.: The scenario approach to robust control design. IEEE Trams. Autom. Control 45(5), 742–753 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  13. Calafiore G., Polyak, B.: Stochastic algorithms for exact and approximate feasibility of robust LMIs. IEEE Trans. Autom. Control. 46(11), 1755–1759 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  14. Campi, M.; Why is resorting to fate wise? A critical look at randomized algorithms in systems and control. Eur. J. Control 16(5), 419430 (2010)

    MathSciNet  MATH  Google Scholar 

  15. Censor, Y., Cegielski, A.: Projection methods: An annotated bibliography of books and reviews. Optimization: A Journal of Math. Progr. Oper. Res. 64(11), 2343–2358 (2015)

    Google Scholar 

  16. Censor, Y., Herman, G.T., Jiang, M.: A note on the behavior of the randomized Kaczmarz algorithm of Strohmer and Vershynin. J. Fourier Anal. Appl. 15(4), 431–436 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  17. Censor, Y., Zenios, S.A.: Parallel Optimization: Theory, Algorithms, and Applications. New York, NY, USA: Oxford University Press; (1997)

    MATH  Google Scholar 

  18. Dabbene, F., Scherbakov, P.S., Polyak, B.T.: A randomized cutting plane method with probabilistic geometric convergence. SIAM J. Optimiz.20(6), 3185–3207 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  19. Dorea, C.: Expected number of steps of a random optimization method. J.Optimiz. Th. Appl. 39(2), 165–171 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  20. Eldar, E., Needell, D.: Acceleration of randomized Kaczmarz method via the Johnson Lindenstrauss Lemma Numerical Algorithms 58(2), 163–177 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  21. Ermoliev, Yu., Wets, R. (eds.): Numerical Techniques for Stochastic Optimization. Springer (1988)

    Google Scholar 

  22. Fisher, R.A.: The Design of Experiments. Oliver and Boyd, Edinburgh (1935)

    Google Scholar 

  23. Gilks, W.R., Richardson, S., Spiegelhalter, D.J.: Markov Chain Monte Carlo in Practice. Chapman and Hall, London (1996)

    MATH  Google Scholar 

  24. Goldberg, D.: Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wesley, Reading, MA (1989)

    MATH  Google Scholar 

  25. Goldensluger, A, Polyak, B.: Estimation of regression parameters with arbitrary noise. Math. Meth. Stat. 2(1), 18–29 (1993)

    MathSciNet  Google Scholar 

  26. Gower, M., Richtarik, P.: Randomized iterative methods for linear systems. SIAM J. Matr. Anal. Appl. 36(4)1660–1690 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  27. Granichin, O.: Estimating the parameters of linear regression in an arbitrary noise. Autom. Remote Control 63(1), 25–35 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  28. Granichin, O., Polyak, B.: Randomized Algorithms for Estimation and Optimization under Almost Arbitrary Noises. Nauka, Moscow (2003) (in Russian)

    Google Scholar 

  29. Granichin, O., Volkovich, Z., Toledano-Kitai, D.: Randomized Algorithms in Automatic Control and Data Mining. Springer, Berlin-Heidelberg (2015)

    Book  Google Scholar 

  30. Gryazina, E.N., Polyak, B.: Random sampling: Billiard Walk algorithm. Eur. J. Oper. Res. 238(2), 497–504 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  31. Gubin, L., Polyak, B., Raik, E.: The method of projections for finding the common point of convex sets. USSR Comput. Math. Math. Phys. 7(6), 1-24 (1967)

    Article  Google Scholar 

  32. Gupal, A.: A method for the minimization of almost-differentiable functions. Cybernetics. (1), 115–117 (1977)

    Google Scholar 

  33. Gürbüzbalaban, M. Ozdaglar, A., Parrilo, P.: Why random reshuffling beats stochastic gradient descent, arXiv:1510.08560v2 [math.OC], May 1, 2018.

  34. Heunis, A.J.: Use of Monte Carlo method in an algorithm which solves a set of functional inequalities. J. Optim. Theory Appl. 45(1), 89–99 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  35. Horst, R., Pardalos, Panos M. (eds.): Handbook of Global Optimization, vol. 1. Kluwer, Dordrecht (1995)

    MATH  Google Scholar 

  36. Kaczmarz, S.: Angenäherte Aufslösung von Systemen linearer Gleichungen. Bull. Intern. Acad. Polon. Sci., Lett. A. 355–357 (1937). English translation: Approximate solution of systems of linear equations. Int. J. Control 57(6), 1269–1271 (1993)

    Google Scholar 

  37. Kroese, D.P., Taimre, T., Botev,Z.I.: Handbook of Monte Carlo Methods. John Wiley and Sons, New York (2011)

    Book  MATH  Google Scholar 

  38. Kushner, H.J., Clark, D.S.: Stochastic Approximation Methods for Constrained and Unconstrained Systems. Vol. 26 of Applied Mathematical Sciences. Springer, New York (1978)

    Chapter  MATH  Google Scholar 

  39. Lagoa, C.M., Li, X., Sznaier, M.: Probabilistically constrained linear programs and risk-adjusted controller design. SIAM J. Optimiz. 15(3), 938–951 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  40. Lagoa, C.M., Shcherbakov, P.S., Barmish, B.R.: Probabilistic enhancement of classical robustness margins: The unirectangularity concept. Syst. Control Lett. 35(1), 31–43 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  41. Leventhal, D., Lewis, A.S.: Randomized methods for linear constraints: Convergence rates and conditioning. Math. Oper. Res. 35(3) 641–654 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  42. Matyas, J.: Random optimization. Autom. Remote Control 26(2), 246–253 (1965)

    MathSciNet  MATH  Google Scholar 

  43. Metropolis, N., Ulam S.: The Monte Carlo method. J. Amer. Stat. Assoc. 44(247), 335–341 (1949)

    Article  MATH  Google Scholar 

  44. Motzkin, T.S., Shoenberg, I.J.: The relaxation method for linear inequalities. Canad. J. Math. 6, 393–404 (1954)

    Article  MathSciNet  Google Scholar 

  45. Nedic, A.: Random algorithms for convex minimization problems. Math. Progr. 129(2), 225–253 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  46. Nemirovskii, A.S, Polyak, B.T.: Necessary conditions for the stability of polynomials and their use. Autom. Remote Control 55(11), 1644–1649 (1994)

    MATH  Google Scholar 

  47. Nemirovski, A., Yudin, D.B.: Problem Complexity and Method Efficiency in Optimization. John Wiley and Sons, New York (1983)

    Google Scholar 

  48. Nesterov, Yu.: Introductory Lectures on Convex Optimization: A Basic Course. Klüwer (2004)

    Google Scholar 

  49. Nesterov, Y.: Efficiency of coordinate descent methods on huge-scale optimization problems. SIAM J. Optimiz. 22(2), 341–362 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  50. Nesterov, Yu., Spokoiny, V.: Random gradient-free minimization of convex functions. Foundations Comput. Math. 17(2), 527–566 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  51. Novikova, N.M.: Stochastic quasi-gradient method for minimax seeking. USSR Comp. Math. Math. Phys. 17, 91–99 (1977)

    Article  Google Scholar 

  52. Pardalos, Panos M., Romeijn, H. Edwin (eds.): Handbook of Global Optimization, vol. 2. Kluwer, Dordrecht (2002)

    MATH  Google Scholar 

  53. Petrikevich, Ya. I.: Randomized methods of stabilization of the discrete linear systems. Autom. Remote Control 69(11), 1911–1921 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  54. Petrikevich, Ya.I., Polyak, B.T., Shcherbakov, P.S.: Fixed-order controller design for SISO systems using Monte Carlo technique. In: Proc. 9th IFAC Workshop “Adaptation and Learning in Control and Signal Processing” (ALCOSP’07) St.Petersburg, Russia (2007)

    Article  Google Scholar 

  55. Polyak, B.T.: Introduction to Optimization. Optimization Software, New York (1987)

    MATH  Google Scholar 

  56. Polyak, B.: Random algorithms for solving convex inequalities. In: Butnariu, D., Censor, Y., Reich, S. (eds.) Inherently Parallel Algorithms in Feasibility and Optimization and Their Applications, pp. 409–422. Elsevier (2001)

    Google Scholar 

  57. Polyak, B.T., Gryazina, E.N.: Randomized methods based on new Monte Carlo schemes for control and optimization. Ann. Oper. Res. 189(1), 342–356 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  58. Polyak, B.T., Shcherbakov, P.S.: A probabilistic approach to robust stability of time delay systems. Autom. Remote Control 57(12), 1770–1779 (1996)

    MathSciNet  MATH  Google Scholar 

  59. Polyak, B.T., Shcherbakov, P.S.: Random spherical uncertainty in estimation and robustness. IEEE Trans. Autom Control 45(11), 2145–2150 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  60. Polyak, B., Shcherbakov, P.: Why does Monte Carlo Fail to Work Properly in High-Dimensional Optimization Problems? J. Optim. Th. Appl. 173(2), 612–627 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  61. Polyak, B.T., Tempo, R.: Probabilistic robust design with linear quadratic regulators. Syst. Control Lett. 43(5), 343–353 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  62. Polyak, B.T., Tsybakov, A.B.: Optimal order of accuracy for search algorithms in stochastic optimization. Problems Inform. Transmiss. 26(2), 126–133 (1990)

    MATH  Google Scholar 

  63. Polyak, B.T., Tsybakov, A.B.: On stochastic approximation with arbitrary noise (the KW case). In: Khas’minskii, R.Z. (ed.) Topics in Nonparametric Estimation. Advances in Soviet Math. 12, 107–113 (1992)

    Google Scholar 

  64. Polyak, B., Yuditskij A.: Acceleration of stochastic approximation procedures by averaging. SIAM J. on Control Optimiz. 30(4), 838–855 (1992)

    Article  MATH  Google Scholar 

  65. Rastrigin, L.A.: Statistical Search Method. Nauka, Moscow (1968) in Russian)

    Google Scholar 

  66. Richtárik, P., Tacá\(\check{\rm c}\), M.: Iteration complexity of randomized block-coordinate descent methods for minimizing a composite function. Math. Progr. 2014, 144(1–2), 1–38 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  67. Robert, C.P., Casella, G.: Monte Carlo Statistical Methods. Springer-Verlag, New York (1999)

    Book  MATH  Google Scholar 

  68. Shcherbakov, P.: Boundary oracles for control-related matrix sets. In: Proc. 19th Int. Symp. “Mathematical Theory of Networks and Systems” (MTNS-2010), Budapest, Hungary, Jul 5–9, 2010, pp. 665–670.

    Google Scholar 

  69. Shcherbakov, P., Dabbene, F.: On the generation of random stable polynomials. Eur. J. Control 17(2), 145–159 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  70. Simon, D.: Evolutionary Optimization Algorithms. Wiley, New York (2013)

    Google Scholar 

  71. Smith, R.L.: Efficient Monte Carlo procedures for generating points uniformly distributed over bounded regions. Oper. Res. 32(6), 1296–1308 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  72. Solis, F.J., Wets, R.J-B.: (1981). Minimization by random search techniques. Math. Oper. Res. 6(1), 19–13 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  73. Spall, J.C.: Introduction to Stochastic Search and Optimization: Estimation, Simulation, and Control. Vol. 64 of Wiley-Interscience series in discrete mathematics and optimization. John Wiley and Sons, Hoboken, NJ (2003)

    Google Scholar 

  74. Stengel, R.F., Ray L.R.: Stochastic robustness of linear time-invariant control systems. IEEE Trans. Autom. Control 36(1), 82–87 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  75. Strohmer, T., Vershynin, R.: A randomized Kaczmarz algorithm with exponential convergence. J. Fourier Anal. Appl. 15(2), 262–278 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  76. Tempo, R., Bai, Er-Wei, Dabbene, F.: Probabilistic robustness analysis: Explicit bounds for the minimum number of samples Syst. Control Lett. 30(5), 237–242 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  77. Tempo, R., Calafiore, G., Dabbene, F.: Randomized Algorithms for Analysis and Control of Uncertain Systems, with Applications. Springer, London (2013)

    MATH  Google Scholar 

  78. Tremba, A., Calafiore, G., Dabbene, F., Gryazina, E., Polyak, B., Shcherbakov, P., Tempo, R.: RACT: Randomized algorithms control toolbox for MATLAB. In: Proc. 17th World Congress of IFAC, Seoul, pp. 390–395 (2008)

    Google Scholar 

  79. Turchin, V.F.: On the computation of multidimensional integrals by the Monte-Carlo method. Theory of Probability and its Applications, 16(4), 720–724 (1972)

    Article  Google Scholar 

  80. Volkov, Y.V., Zavriev, S.K.: A general stochastic outer approximation method. SIAM J. Control Optimiz. 35(4), 1387–1421 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  81. Yakubovich, V.A.: Finite terminating algorithms for solving countable systems of inequalities and their application in problems of adaptive systems Doklady AN SSSR 189, 495–498 (1969) (in Russian)

    Google Scholar 

  82. Zhigljavsky, A., Z̆hilinskas, A.: Stochastic Global Optimization. Springer Science+Business Media, New York (2008)

    Google Scholar 

Download references

Acknowledgements

Financial support for this work was provided by the Russian Science Foundation through project no. 16-11-10015.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Polyak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Polyak, B., Shcherbakov, P. (2018). Randomization in Robustness, Estimation, and Optimization. In: Başar, T. (eds) Uncertainty in Complex Networked Systems. Systems & Control: Foundations & Applications. Birkhäuser, Cham. https://doi.org/10.1007/978-3-030-04630-9_5

Download citation

Publish with us

Policies and ethics