Skip to main content

Exercise, Gene Regulation, and Cardiometabolic Disease

  • Chapter
  • First Online:
Cardiorespiratory Fitness in Cardiometabolic Diseases

Abstract

Functions in all tissues depend on proteins that are produced through the process of transcription of genes, i.e., gene expression. The regulation of gene expression in the human body is a complex network that encompasses the entire central dogma of cell biology. Gene expression can be regulated at the transcriptomic level through epigenetic silencing of genes as well as through the promotion of gene expression with the binding of transcription factors. Gene expression can also be altered following the production of mature messenger RNA transcripts. This chapter will detail genes which are misregulated in cardiometabolic disease and how the aberrant expression of these genes results in metabolic issues. Additionally, we highlight that exercise can positively influence several of the same molecular pathways that are negatively affected in CMD. Furthermore, we discuss how these beneficial changes are all done through the regulation of gene expression and how differences between individuals can influence the effects of exercise.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CMD:

Cardiometabolic disease

miRNA:

MicroRNA

RISC:

RNA-induced silencing complex

PGC-1α:

Peroxisome proliferator-activated receptor gamma coactivator 1-alpha

T2D:

Type II diabetes

OXPHOS:

Oxidative phosphorylation

HATs:

Histone acetyltransferases

HDACs:

Histone deacetylases

References

  1. Caspersen CJ, Powell KE, Christenson GM. Physical activity, exercise, and physical fitness: definitions and distinctions for health-related research. Public Health Rep. 1985;100(2):126–31.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Esposito K, Giugliano D. The metabolic syndrome and inflammation: association or causation? Nutr Metab Cardiovasc Dis. 2004;14:228–32.

    CAS  PubMed  Google Scholar 

  3. Ndisang JF, Rastogi S. Cardiometabolic diseases and related complications: current status and future perspective. Biomed Res Int. 2013;2013:1–3.

    Google Scholar 

  4. Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P. Molecular biology of the cell. 5th ed. New York: Garland Science; 2008.

    Google Scholar 

  5. Li B, Carey M, Workman JL. The role of chromatin during transcription. Cell. 2007;128(4):707–19.

    CAS  PubMed  Google Scholar 

  6. Portela A, Esteller M. Epigenetic modifications and human disease. Nat Biotechnol. 2010;28(10):1057–68.

    CAS  PubMed  Google Scholar 

  7. Muhonen P, Holthofer H. Epigenetic and microRNA-mediated regulation in diabetes. Nephrol Dial Transplant. 2009;24(4):1088–96.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Lin J, Handschin C, Spiegelman BM. Metabolic control through the PGC-1 family of transcription coactivators. Cell Metab. 2005;1(6):361–70.

    PubMed  Google Scholar 

  9. Liang H, Ward WF. PGC-1a: a key regulator of energy metabolism. Adv Physiol Educ. 2006;30:145–51.

    PubMed  Google Scholar 

  10. Kelly DP, Scarpulla RC. Transcriptional regulatory circuits controlling mitochondrial biogenesis and function. Genes Dev. 2004;314:357–68.

    Google Scholar 

  11. Puigserver P, Spiegelman BM. Peroxisome proliferator-activated receptor-γ coactivator 1α (PGC-1α): Transcriptional coactivator and metabolic regulator. Endocr Rev. 2003;24(1):78–90.

    CAS  PubMed  Google Scholar 

  12. Mootha VK, Lindgren CM, Eriksson K-F, Subramanian A, Sihag S, Lehar J, et al. PGC-1α-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nat Genet. 2003;34(3):267–73.

    CAS  PubMed  Google Scholar 

  13. Patti ME, Butte AJ, Crunkhorn S, Cusi K, Berria R, Kashyap S, et al. Coordinated reduction of genes of oxidative metabolism in humans with insulin resistance and diabetes: Potential role of PGC1 and NRF1. Proc Natl Acad Sci. 2003;100(14):8466–71.

    CAS  PubMed  Google Scholar 

  14. Attie AD, Kendziorski CM. PGC-1 alpha at the crossroads of type 2 diabetes. Nat Genet. 2003;34(3):244–5.

    CAS  PubMed  Google Scholar 

  15. Mootha VK, Handschin C, Arlow D, Xie X, St. Pierre J, Sihag S, et al. Err and Gabpa/b specify PGC-1 -dependent oxidative phosphorylation gene expression that is altered in diabetic muscle. Proc Natl Acad Sci. 2004;101(17):6570–5.

    CAS  PubMed  Google Scholar 

  16. Alibegovic AC, Sonne MP, Højbjerre L, Jacobsen S, Nilsson E, Færch K, et al. Insulin resistance induced by physical inactivity is associated with multiple transcriptional changes in skeletal muscle in young men. Am J Physiol Endocrinol Metab. 2010;299(5):752–63.

    Google Scholar 

  17. Barrès R, Osler ME, Yan J, Rune A, Fritz T, Caidahl K, et al. Non-CpG methylation of the PGC-1α promoter through DNMT3B controls mitochondrial density. Cell Metab. 2009;10(3):189–98.

    PubMed  Google Scholar 

  18. Finck BN, Kelly DP. PGC-1 coactivators: inducible regulators of energy metabolism in health and disease. J Clin Invest. 2006;116(3):615–22.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Liu C, Lin JD. PGC-1 coactivators in the control of energy metabolism. Acta Biochim Biophys. 2010;43(4):248–57.

    Google Scholar 

  20. Yoon JC, Xu G, Deeney JT, Yang S, Rhee J, Puigserver P, et al. Suppression of Beta Cell Energy Metabolism and Insulin Release by PGC-1 ␣. Dev Cell. 2003;5:73–83.

    CAS  PubMed  Google Scholar 

  21. Ling C, Del Guerra S, Lupi R, Rönn T, Granhall C, Luthman H, et al. Epigenetic regulation of PPARGC1A in human type 2 diabetic islets and effect on insulin secretion. Diabetologia. 2008;51(4):615–22.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Sharples AP, Stewart CE, Seaborne RA. Does skeletal muscle have an “epi”-memory? The role of epigenetics in nutritional programming, metabolic disease, aging and exercise. Aging Cell. 2016;15(4):603–16.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Barres R, Kirchner H, Rasmussen M, Yan J, Kantor F, Krook A, et al. Weight loss after gastric bypass surgery in human obesity remodels promoter methylation. Cell Rep. 2013;3(4):1020–7.

    CAS  PubMed  Google Scholar 

  24. Zhao J, Goldberg J, Bremner JD, Vaccarino V. Global DNA methylation is associated with insulin resistance: a monozygotic twin study. Diabetes. 2012;61(2):542–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Sookoian S, Rosselli MS, Gemma C, Burgueno AL, Gianotti TF, Castano GO, et al. Epigenetic regulation of insulin resistance in nonalcoholic fatty liver disease: impact of liver methylation of the peroxisome proliferator–activated receptor gamma coactivator 1alpha promoter. Hepatology. 2010;55:1992–2000.

    Google Scholar 

  26. Wahl S, Drong A, Lehne B, Loh M, Scott WR, Kunze S, et al. Epigenome-wide association study of body mass index, and the adverse outcomes of adiposity. Nature. 2017;541(7635):81–6.

    CAS  PubMed  Google Scholar 

  27. Holmes MV, Pulit SL, Lindgren CM. Genetic and epigenetic studies of adiposity and cardiometabolic disease. Genome Med. 2017;9(82):1–4.

    Google Scholar 

  28. Barrès R, Zierath JR. The role of diet and exercise in the transgenerational epigenetic landscape of T2DM. Nat Rev Endocrinol [Internet]. 2016;12(8):441–51. Available from: https://doi.org/10.1038/nrendo.2016.87.

  29. Schagdarsurengin U, Steger K. Epigenetics in male reproduction: effect of paternal diet on sperm quality and offspring health. Nat Rev Urol. 2016;13(10):584–95.

    CAS  PubMed  Google Scholar 

  30. Ordovas JM, Smith CE. Epigenetics and cardiovascular disease. Nat Rev Cardiol. 2010;7(9):510–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Wei Y, Yang C, Wei Y, Zhao Z, Hou Y, Schatten H, et al. Paternally induced transgenerational inheritance of susceptibility to diabetes in mammals. Proc Natl Acad Sci. 2014;111:1873–8.

    CAS  PubMed  Google Scholar 

  32. Morgan DK, Whitelaw E. The case for transgenerational epigenetic inheritance in humans. Mamm Genome. 2008;19:394–7.

    PubMed  Google Scholar 

  33. Kaati G, Bygren LO, Edvinsson S. Cardiovascular and diabetes mortality determined by nutrition during parents ’ and grandparents ’ slow growth period. Eur J Hum Genet. 2002;10:682–8.

    CAS  PubMed  Google Scholar 

  34. Dean W, Santos F, Reik W. Epigenetic reprogramming in early mammalian development and following somatic nuclear transfer. Semin Cell Dev Biol. 2003;14:93–100.

    CAS  PubMed  Google Scholar 

  35. Petersen AMW, Pedersen BK. The anti-inflammatory effect of exercise. J Appl Physiol. 2005;98(4):1154–62.

    CAS  PubMed  Google Scholar 

  36. Tsiotra PC, Boutati E, Dimitriadis G, Raptis SA. High insulin and leptin increase resistin and inflammatory cytokine production from human mononuclear cells. Biomed Res Int. 2013;2013:1–10.

    Google Scholar 

  37. Gleeson M. Immune function in sport and exercise. J Appl Physiol. 2007;103(2):693–9.

    CAS  PubMed  Google Scholar 

  38. Reddy MA, Natarajan R. Epigenetic mechanisms in diabetic vascular complications. Cardiovasc Res. 2011;90(3):421–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Barnes PJ, Karin M. Nuclear Factor-kB – a pivotal transcription factor in chronic inflammatory diseases. N Engl J Med. 1997;336:1066–71.

    CAS  PubMed  Google Scholar 

  40. Gray S, De Meyts P. Role of histone and transcription factor acetylation in diabetes pathogenesis. Diabetes Metab Res Rev. 2005;21:416–33.

    CAS  PubMed  Google Scholar 

  41. Shoelson SE, Lee J, Goldfine AB. Inflammation and insulin resistance. J Clin Invest. 2006;116:1793–801.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Ndisang JF. Role of heme oxygenase in inflammation, insulin-signalling, diabetes and obesity. Mediators Inflamm. 2010;2010:1–18.

    Google Scholar 

  43. Miao F, Gonzalo IG, Lanting L, Natarajan R. In vivo chromatin remodeling events leading to inflammatory gene transcription under diabetic conditions. J Biol Chem. 2004;279(17):18091–7.

    CAS  PubMed  Google Scholar 

  44. Villeneuve LM, Reddy MA, Natarajan R. Epigenetics: deciphering its role in diabetes and its chronic complications. Clin Exp Pharmacol Physiol. 2011;38(7):401–9.

    CAS  PubMed Central  Google Scholar 

  45. Monteiro R, Azevedo I. Chronic inflammation in obesity and the metabolic syndrome. Mediators Inflamm. 2010;2010:1–10.

    Google Scholar 

  46. Zanuso S, Sacchetti M, Sundberg CJ, Orlando G, Benvenuti P, Balducci S. Exercise in type 2 diabetes: genetic, metabolic and neuromuscular adaptations. A review of the evidence. Br J Sports Med. 2017;0:1–8.

    Google Scholar 

  47. Bork-jensen J, Scheele C, Christophersen DV, Nilsson E, Friedrichsen M, Fernandez-twinn DS, et al. Glucose tolerance is associated with differential expression of microRNAs in skeletal muscle : results from studies of twins with and without type 2 diabetes. Diabetologia. 2015;58:363–73.

    CAS  PubMed  Google Scholar 

  48. Deiuliis JA. MicroRNAs as regulators of metabolic disease: pathophysiologic significance and emerging role as biomarkers and therapeutics. Int J Obes. 2016;40:88–101.

    CAS  Google Scholar 

  49. Poy MN, Eliasson L, Krutzfeldt J, Kuwajima S, Ma X, MacDonald PE, et al. A pancreatic islet-specific microRNA regulates insulin secretion. Nature. 2004;432(7014):226–30.

    CAS  PubMed  Google Scholar 

  50. Zacharewicz E, Lamon S, Russell AP. MicroRNAs in skeletal muscle and their regulation with exercise, ageing, and disease. Front Physiol. 2013;4:1–11.

    Google Scholar 

  51. Gallagher IJ, Scheele C, Keller P, Nielsen AR, Remenyi J, Fischer CP, et al. Integration of microRNA changes in vivo identifies novel molecular features of muscle insulin resistance in type 2 diabetes. Genome Med. 2010;2:1–18.

    PubMed  PubMed Central  Google Scholar 

  52. Christensen DP, Dahllöf M, Lundh M, Rasmussen DN, Nielsen MD, Billestrup N, et al. Histone deacetylase (HDAC) inhibition as a novel treatment for diabetes mellitus. Mol Med. 2011;17:378–90.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Stepto NK, Coffey VG, Carey AL, Ponnampalam AP, Canny BJ, Powell D, et al. Global gene expression in skeletal muscle from well-trained strength and endurance athletes. Med Sci Sports Exerc. 2009;41(3):546–65.

    CAS  PubMed  Google Scholar 

  54. Lindholm ME, Marabita F, Gomez-Cabrero D, Rundqvist H, Ekström TJ, Tegnér J, et al. An integrative analysis reveals coordinated reprogramming of the epigenome and the transcriptome in human skeletal muscle after training. Epigenetics. 2014;9(12):1557–69.

    PubMed  PubMed Central  Google Scholar 

  55. Baar K, Wende AR, Jones TE, Marison M, Nolte LA, Chen MAY, et al. Adaptations of skeletal muscle to exercise : rapid increase in the transcriptional coactivator PGC-1. FASEB J. 2002;16:1879–86.

    CAS  PubMed  Google Scholar 

  56. Pilegaard H, Saltin B, Neufer PD. Exercise induces transient transcriptional activation of the PGC-1a gene in human skeletal muscle. J Physiol. 2003;546:851–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Norrbom J, Sundberg CJ, Ameln H, Kraus WE, Jansson E, Gustafsson T. PGC-1a mRNA expression is influenced by metabolic perturbation in exercising human skeletal muscle. J Appl Physiol. 2004;96:189–94.

    CAS  PubMed  Google Scholar 

  58. Irrcher I, Adhihetty PJ, Sheehan T, Joseph A, Hood DA. PPARg coactivator-1a expression during thyroid hormone- and contractile activity-induced mitochondrial adaptations. Am J Physiol Cell Physiol. 2003;284:C1669–77.

    CAS  PubMed  Google Scholar 

  59. Fernandez-marcos PJ, Auwerx J. Regulation of PGC-1 a, a nodal regulator of mitochondrial biogenesis. Am J Clin Nutr. 2011;93:884–90.

    Google Scholar 

  60. Richter EA, Hargreaves M. Exercise, glut4, and skeletal muscle glucose uptake. Physiol Rev. 2013;93:993–1017.

    CAS  PubMed  Google Scholar 

  61. Holten MK, Zacho M, Gaster M, Juel C, Wojtaszewski JFP, Dela F. Strength training increases insulin-mediated glucose uptake, GLUT4 content, and insulin signaling in skeletal muscle in patients with type 2 diabetes. Diabetes. 2004;53:294–305.

    CAS  PubMed  Google Scholar 

  62. Barrès R, Yan J, Egan B, Treebak JT, Rasmussen M, Fritz T, et al. Acute exercise remodels promoter methylation in human skeletal muscle. Cell Metab. 2012;15(3):405–11.

    PubMed  Google Scholar 

  63. Nitert MD, Dayeh T, Volkov P, Elgzyri T, Hall E, Nilsson E, et al. Impact of an exercise intervention on DNA methylation in skeletal muscle from first-degree relatives of patients with type 2 diabetes. Diabetes. 2012;61(12):3322–32.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Voisin S, Eynon N, Yan X, Bishop DJ. Exercise training and DNA methylation in humans. Acta Physiol. 2015;213(1):39–59.

    CAS  Google Scholar 

  65. Rönn T, Volkov P, Davegårdh C, Dayeh T, Hall E, Olsson AH, et al. A six months exercise intervention influences the genome-wide DNA methylation pattern in human adipose tissue. PLoS Genet. 2013;9(6):1–16.

    Google Scholar 

  66. Gjevestad GO, Holven KB, Ulven SM. Effects of exercise on gene expression of inflammatory markers in human peripheral blood cells: a systematic review. Curr Cardiovasc Risk Rep. 2015;9(34):1–17.

    Google Scholar 

  67. Adoglou N, Perrea D, Iliadis F, Angelopoulou N, Liapis C, Alevizoa M. Exercise reduces resistin and inflammatory cytokines in patients with type 2 diabetes. Diabetes Care. 2007;30(3):719–21.

    Google Scholar 

  68. Kilian Y, Wehmeier UF, Wahl P, Mester J, Hilberg T, Sperlich B. Acute response of circulating vascular regulating micrornas during and after high-intensity and high-volume cycling in children subjects and ethics statement. Front Physiol. 2016;7:1–9.

    Google Scholar 

  69. Radom-aizik S, Zaldivar F, Leu S, Adams GR, Oliver S, Cooper DM. Effects of exercise on microrna expression in young males peripheral blood mononuclear cells. Clin Transl Sci. 2012;5(1):32–8.

    PubMed  PubMed Central  Google Scholar 

  70. Bouchard C, Antunes-Correa LM, Ashley EA, Franklin N, Hwang PM, Mattsson CM, et al. Personalized preventive medicine: genetics and the response to regular exercise in preventive interventions. Prog Cardiovasc Dis. 2015;57(4):337–46.

    PubMed  Google Scholar 

  71. Vollaard NBJ, Constantin-Teodosiu D, Fredriksson K, Rooyackers O, Jansson E, Greenhaff PL, et al. Systematic analysis of adaptations in aerobic capacity and submaximal energy metabolism provides a unique insight into determinants of human aerobic performance. J Appl Physiol. 2009;106:1479–86.

    PubMed  Google Scholar 

  72. Bouchard C, An P, Rice T, Skinner JS, Wilmore JH, Gagnon J, et al. Familial aggregation of VO2max response to exercise training: results from the HERITAGE Family Study. J Appl Physiol. 1999;87:1003–8.

    CAS  PubMed  Google Scholar 

  73. Sarzynski MA, Ghosh S, Bouchard C. Genomic and transcriptomic predictors of response levels to endurance exercise training. J Physiol. 2017;595(9):2931–9.

    CAS  PubMed  Google Scholar 

  74. Timmons JA, Larsson O, Jansson E, Fischer H, Gustafsson T, Greenhaff PL, et al. Human muscle gene expression responses to endurance training provide a novel perspective on Duchenne muscular dystrophy. FASEB J [Internet]. 2005;19(7):750–60. Available from: http://www.ncbi.nlm.nih.gov/pubmed/15857889.

    CAS  Google Scholar 

  75. Timmons JA, Jansson E, Fischer H, Gustafsson T, Greenhaff PL, Ridden J, et al. Modulation of extracellular matrix genes reflects the magnitude of physiological adaptation to aerobic exercise training in humans. BMC Biol. 2005;3(19):1–10.

    Google Scholar 

  76. Timmons JA, Knudsen S, Rankinen T, Koch LG, Sarzynski M, Jensen T, et al. Using molecular classification to predict gains in maximal aerobic capacity following endurance exercise training in humans. J Appl Physiol. 2010;108:1487–96.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Bouchard C, Sarzynski MA, Rice TK, Kraus WE, Church TS, Sung YJ, et al. Genomic predictors of the maximal O2 uptake response to standardized exercise training programs. J Appl Physiol. 2011;110:1160–70.

    CAS  PubMed  Google Scholar 

  78. Bouchard C, Blair SN, Church TS, Earnest CP, Hagberg JM, Jenkins NT, et al. Adverse metabolic response to regular exercise: is it a rare or common occurrence? PLoS One. 2012;7(5):e37887.

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Pandey A, Swift DL, Mcguire DK, Ayers CR, Neeland IJ, Blair SN, et al. Metabolic effects of exercise training among fitness- nonresponsive patients with type 2 diabetes: the HART-D study. Diabetes Care. 2015;38:1494–501.

    PubMed  PubMed Central  Google Scholar 

  80. Montero D, Lundby C. Refuting the myth of non-response to exercise training: “non-responders” do respond to higher dose of training. J Physiol. 2017;11:3377–87.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carl Johan Sundberg .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chapman, M.A., Sundberg, C.J. (2019). Exercise, Gene Regulation, and Cardiometabolic Disease. In: Kokkinos, P., Narayan, P. (eds) Cardiorespiratory Fitness in Cardiometabolic Diseases. Springer, Cham. https://doi.org/10.1007/978-3-030-04816-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-04816-7_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-04815-0

  • Online ISBN: 978-3-030-04816-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics