Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 133 Accesses

Abstract

With an ageing population [1] and an increasing rate of sports related injuries [2], the need for a steady and reliable source of good quality materials for orthopaedic applications seems paramount. Currently, the three main commercially available types of orthopaedic implants are: non-degradable implants, biodegradable polymeric implants and bioresorbable composites or biocomposites, that is composites made of biodegradable polymers and calcium-based fillers. Figure 1.1 depicts the different types of interference screws for anterior cruciate ligament (ACL) reconstruction manufactured by Stryker [3].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Suzman, R., Beard, J. (2011). Global health and aging. Technical Report 11-7737, World Health Organization.

    Google Scholar 

  2. Health and Social Care Information Centre (2012). Provisional monthly hospital episode statistics for admitted patient care, outpatients and accident and emergency data - April 2012. Technical report, National Health Service.

    Google Scholar 

  3. Stryker (2004). Fixation devices for ACL reconstruction. Commercial brochure. Retrieved September 1, 2016 from http://www.stryker.com/emea/Solutions/ACLRepair/UniversalACLInstrumentationSystem/index.htm.

  4. Myers, P., Logan, M., Stokes, A., Boyd, K., & Watts, M. (2008). Bioabsorbable versus titanium interference screws with hamstring autograft in anterior cruciate ligament reconstruction: a prospective randomized trial with 2-year follow-up. Arthroscopy: The Journal of Arthroscopic & Related Surgery  24(7), 817–823.

    Google Scholar 

  5. Emond, C. E., Woelber, E. B., Kurd, S. K., Ciccotti, M. G., & Cohen, S. B. (2011). A comparison of the results of anterior cruciate ligament reconstruction using bioabsorbable versus metal interference screws: a meta-analysis. JBJS, 93(6), 572–580.

    Article  Google Scholar 

  6. Drogset, J. O., Straume, L. G., Bjørkmo, I., & Myhr, G. (2011). A prospective randomized study of ACL-reconstructions using bone-patellar tendon-bone grafts fixed with bioabsorbable or metal interference screws. Knee Surgery, Sports Traumatology, Arthroscopy, 19(5), 753–759.

    Article  Google Scholar 

  7. Kontakis, G. M., Pagkalos, J. E., Tosounidis, T. I., Melissas, J., & Katonis, P. (2007). Bioabsorbable materials in orthopaedics. Acta Orthopaedica Belgica, 73(2), 159.

    Google Scholar 

  8. Ambrose, C. G., & Clanton, T. O. (2004). Bioabsorbable implants: review of clinical experience in orthopedic surgery. Annals of Biomedical Engineering, 32(1), 171–177.

    Article  Google Scholar 

  9. Amini, A. R., Wallace, J. S., & Nukavarapu, S. P. (2011). Short-term and long-term effects of orthopedic biodegradable implants. Journal of Long-term Effects of Medical Implants 21(2).

    Google Scholar 

  10. Hench, L. L., & Polak, J. M. (2002). Third-generation biomedical materials. Science, 295(5557), 1014–1017.

    Article  CAS  Google Scholar 

  11. Walton, M., & Cotton, N. J. (2007). Long-term in vivo degradation of poly-L-lactide (PLLA) in bone. Journal of Biomaterials Applications, 21(4), 395–411.

    Article  CAS  Google Scholar 

  12. Weiler, A., Hoffmann, R. F., Stähelin, A. C., Helling, H.-J., & Südkamp, N. P. (2000). Biodegradable implants in sports medicine: the biological base. Arthroscopy, 16(3), 305–321.

    Article  CAS  Google Scholar 

  13. Disegi, J. A., & Wyss, H. (1989). Implant materials for fracture fixation: a clinical perspective. Orthopedics, 12(1), 75–79.

    CAS  Google Scholar 

  14. Pietrzak, W. S., Verstynen, M. L., & Sarver, D. R. (1997). Bioabsorbable fixation devices: status for the craniomaxillofacial surgeon. The Journal of Craniofacial Surgery, 8(2), 92–96.

    Article  CAS  Google Scholar 

  15. Verheyen, C., De Wijn, J., Van Blitterswijk, C., & De Groot, K. (1992). Evaluation of hydroxylapatite/poly(L-lactide) composites: mechanical behavior. Journal of Biomedical Materials Research, 26(10), 1277–1296.

    Google Scholar 

  16. Shikinami, Y., & Okuno, M. (1999). Bioresorbable devices made of forged composites of hydroxyapatite (HA) particles and poly-L-lactide (PLLA): part I. Basic characteristics. Biomaterials, 20(9), 859–877.

    Google Scholar 

  17. Tsunoda, M. (2003). Degradation of poly(DL-lactic acid-co-glycolic acid) containing calcium carbonate and hydroxyapatite fillers-effect of size and shape of the fillers. Dental Materials Journal, 22(3), 371–382.

    Article  CAS  Google Scholar 

  18. Deng, X., Sui, G., Zhao, M., Chen, G., & Yang, X. (2007). Poly(L-lactic acid)/hydroxyapatite hybrid nanofibrous scaffolds prepared by electrospinning. Journal of Biomaterials Science, Polymer Edition, 18(1), 117–130.

    Google Scholar 

  19. Yang, Z., Best, S. M., & Cameron, R. E. (2009). The influence of \(\alpha \)-tricalcium phosphate nanoparticles and microparticles on the degradation of poly(D, L-lactide-co-glycolide). Advanced Materials, 21(38–39), 3900–3904.

    Google Scholar 

  20. Ara, M., Watanabe, M., & Imai, Y. (2002). Effect of blending calcium compounds on hydrolytic degradation of poly(DL-lactic acid-co-glycolic acid). Biomaterials, 23(12), 2479–2483.

    Google Scholar 

  21. Kikuchi, M., Koyama, Y., Yamada, T., Imamura, Y., Okada, T., Shirahama, N., et al. (2004). Development of guided bone regeneration membrane composed of \(\beta \)-tricalcium phosphate and poly(L-lactide-co-glycolide-co-\(\varepsilon \)-caprolactone) composites. Biomaterials, 25(28), 5979–5986.

    Article  CAS  Google Scholar 

  22. Pan, J., Han, X., Niu, W., & Cameron, R. E. (2011). A model for biodegradation of composite materials made of polyesters and tricalcium phosphates. Biomaterials, 32(9), 2248–2255.

    Google Scholar 

  23. Pan, J. (2014). Modelling degradation of bioresorbable polymeric medical devices. Elsevier.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ismael Moreno-Gomez .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Moreno-Gomez, I. (2019). Introduction. In: A Phenomenological Mathematical Modelling Framework for the Degradation of Bioresorbable Composites. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-030-04990-4_1

Download citation

Publish with us

Policies and ethics