Skip to main content

Nanomaterials: Toxicity, Risk Managment and Public Perception

  • Chapter
  • First Online:
Nanomaterials: Ecotoxicity, Safety, and Public Perception

Abstract

It is believed that the future of medicine lies in nanotechnology where the medicines would be tailor-made according to the requirement of the individual. With the amassed recognition of the potential of nanomaterials they are not only used in medicines but in many other consumer products. Nanomaterials exists in nature everywhere and many others are engineered. Because of the omnipresence of these nanoparticles human beings are blatantly exposed to them. Nevertheless, our knowledge about health and environmental risks of these engineered nanomaterials still remains limited and largely incomplete. Many studies confer their toxicity in animal models where they can lead to teratogenicity, genotoxicity and also defects in organs like liver, lungs , kidneys and immune system. However, the toxic responses depends upon many variables including size, shape, charge , composition and surface area. Nanoparticles (NPs) of same compositions can diverge in term of toxicity by changing the size, shape and charge of NPs. Likewise the time of exposure also plays very vita role in toxicity. Many available studies provide incomplete information by conducting few in vitro analyses. However, the process is so intricate that the in vitro studies are not sufficient to provide enough information to elucidate the full toxic potential. Therefore, in vivo studies are pre-requisite. This chapter provides an insight from toxicologist`s perspective on the matter, outlining possible routes of uptake by humans, known or suspected toxic effects, and the possible practical implication for human health risk assessment and public perception.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

NP:

Nano-particles

UFP:

Ultra Fine Particles

QSAR:

Quantitative Structure Activity Relationship

LDH:

Lactate Dehydrogenase

nm:

Nanometer

TiO2:

Titanium Oxide

TNF:

Tumor Necrosis Factor

SiO2:

Silicon Dioxide

Ni NPs:

Nickel Nano-particles

Co NPs:

Cobalt Nano-particles

IL:

Interleukin

Au:

Gold

Ag:

Silver

Si NPs:

Silicon Nano-particles

PBS:

Phosphate-buffered Saline

BBB:

Blood Brain Barrier

CNS:

Central Nervous System

FDA:

Food and Drug Administration

References

  • Ahmad J, Ahamed M, Akhtar MJ, Alrokayan SA, Siddiqui MA, Musarrat J, Al-Khedhairy AA (2012) Apoptosis induction by silica nanoparticles mediated through reactive oxygen species in human liver cell line HepG2. Toxicol Appl Pharmacol 259:160–168

    Article  CAS  PubMed  Google Scholar 

  • Aillon KL, Xie Y, El-Gendy N, Berkland CJ, Forrest ML (2009) nanomaterials physiochemical properties on in vivo toxicity. Adv Drug Deliv Rev 61:457–466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alkilany AM, Frey RL, Ferry JL, Murphy CJ (2008) Gold nanorods as nanoadmicelles: 1-naphthol partitioning into a nanorod-bound surfactant bilayer. Langmuir 24:10235–10239

    Article  CAS  PubMed  Google Scholar 

  • Allegri M, Bianchi MG, Chiu M, Varet J, Costa AL, Ortelli S, Blosi M, Bussolati O, Poland CA, Bergamaschi E (2016) Shape-related toxicity of titanium dioxide nanofibres. PLoS ONE 11:e0151365

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Anderson DS, Silva RM, Lee D, Edwards PC, Sharmah A, Guo T, Pinkerton KE, Van Winkle LS (2015) Persistence of silver nanoparticles in the rat lung: Influence of dose, size, and chemical composition. Nanotoxicology 9:591–602

    Article  CAS  PubMed  Google Scholar 

  • Andersson POLC, Ekstrand-Hammarstrom B, Akfur C, Ahlinder L, Bucht A, Osterlund L (2011) Polymorph- and size-dependent uptake and toxicity of TiO2 nanoparticles in living lung epithelial cells. Small 7:514–523

    Article  CAS  PubMed  Google Scholar 

  • Athinarayanan J, Periasamy VS, Alsaif MA, Al-Warthan AA, Alshatwi AA (2014) Presence of nanosilica (E551) in commercial food products: TNF-mediated oxidative stress and altered cell cycle progression in human lung fibroblast cells. Cell Biol Toxicol 30:89–100

    Article  CAS  PubMed  Google Scholar 

  • Baird WM, Hooven LA, Mahadevan B (2005) Carcinogenic polycyclic aromatic hydrocarbon-DNA adducts and mechanism of action. Environ Mol Mutagen 45:106–114

    Article  CAS  PubMed  Google Scholar 

  • Barnard AS (2006) Nanohazards: knowledge is our first defence. Nat Mater 5:245

    Article  CAS  PubMed  Google Scholar 

  • Barnes AL, Wassel RA, Mondale F, Chen K, Dormer KL, Kopke RD (2007) Magnetic characterization of superparamagnetic nanoparticles pulled through model membranes. BioMagn Res Technol 5:1

    Article  PubMed  PubMed Central  Google Scholar 

  • Bergin IL, Witzmann FA (2013) Nanoparticle toxicity by the gastrointestinal route: evidence and knowledge gaps. Int J Biomed Nanosci Nanotechnol 3(1–2)

    Article  CAS  Google Scholar 

  • Boogaard H, Kos GP, Weijers EP, Janssen NA, Fischer PH, van der Zee SC, de Hartog JJ, Hoek G (2011) Contrast in air pollution components between major streets and background locations: particulate matter mass, black carbon, elemental composition, nitrogen oxide and ultrafine particle number. Atmos Environ 45:650–658

    Article  CAS  Google Scholar 

  • Borm PJ, Cakmak G, Jermann E, Weishaupt C, Kempers P, van Schooten FJ, Oberdörster G, Schins RP (2005) Formation of PAH–DNA adducts after in vivo and vitro exposure of rats and lung cells to different commercial carbon blacks. Toxicol Appl Pharmacol 205:157–167

    Article  CAS  PubMed  Google Scholar 

  • Bouallegui Y, Ben Younes R, Turki F, Oueslati R (2017) Impact of exposure time, particle size and uptake pathway on silver nanoparticle effects on circulating immune cells in mytilus galloprovincialis. J Immunotoxicol 14:116–124

    Article  CAS  PubMed  Google Scholar 

  • Boverhof DR, Bramante CM, Butala JH, Clancy SF, Lafranconi M, West J, Gordon SC (2015) Comparative assessment of nanomaterial definitions and safety evaluation considerations. Regul Toxicol Pharmacol 73:137–150

    Article  CAS  PubMed  Google Scholar 

  • Bowden LP, Royer MC, Hallman JR, Lewin-Smith M, Lupton GP (2011) Rapid onset of argyria induced by a silver-containing dietary supplement. J Cutan Pathol 38:832–835

    PubMed  Google Scholar 

  • Braakhuis HM, Cassee FR, Fokkens PH, De La Fonteyne LJ, Oomen AG, Krystek P, De Jong WH, Van Loveren H, Park MV (2016) Identification of the appropriate dose metric for pulmonary inflammation of silver nanoparticles in an inhalation toxicity study. Nanotoxicology 10:63–73

    Article  CAS  PubMed  Google Scholar 

  • Chatterjee R (2009) Calculating the costs of nanohazard testing. ACS Publications, pp 3405–3405

    Google Scholar 

  • Chen YS, Hung YC, Liau I, Huang GS (2009) Assessment of the in vivo toxicity of gold nanoparticles. Nanoscale Res Lett 4:858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Z, Sheng X, Wang J, Wen Y (2018) Silver nanoparticles or free silver ions work? An enantioselective phytotoxicity study with a chiral tool. Sci Total Environ 610:77–83

    Article  PubMed  CAS  Google Scholar 

  • Cho M, Cho WS, Choi M, Kim SJ, Han BS, Kim SH, Kim HO, Sheen YY, Jeong J (2009) The impact of size on tissue distribution and elimination by single intravenous injection of silica nanoparticles. Toxicol Lett 189:177–183

    Article  CAS  PubMed  Google Scholar 

  • Choi J, Zheng Q, Katz HE, Guilarte TR (2010) Silica-based nanoparticle uptake and cellular response by primary microglia. Environ Health Perspect 118:589–595

    Article  CAS  PubMed  Google Scholar 

  • Chulz J, Hohenberg H, Pflucker F, Gartner E, Will T, Pfeiffer S, Wepf R, Wendel V, Gers-Barlag H, Wittern KP (2002) Distribution of sunscreens on skin. Adv Drug Deliv Rev (Suppl 1):S157–163

    Google Scholar 

  • De Domenico I, Ward DM, Kaplan J (2007) Hepcidin regulation: ironing out the details. J Clin Investig 117:1755–1758

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • De Jong WH, Borm PJ (2008) Drug delivery and nanoparticles: applications and hazards. Int J Nanomed 3:133

    Article  Google Scholar 

  • Dekkers S, Bouwmeester H, Bos PM, Peters RJ, Rietveld AG, Oomen AG (2013) Knowledge gaps in risk assessment of nanosilica in food: evaluation of the dissolution and toxicity of different forms of silica. Nanotoxicology 7:367–377

    Article  CAS  PubMed  Google Scholar 

  • Dekkers S, Oomen AG, Bleeker EA, Vandebriel RJ, Micheletti C, Cabellos J, Janer G, Fuentes N, Vázquez-Campos S, Borges T, Silva MJ (2016) Towards a nanospecific approach for risk assessment. Regul Toxicol Pharmacol 80:46–59

    Article  PubMed  Google Scholar 

  • Delfino RJ, Staimer N, Tjoa T, Arhami M, Polidori A, Gillen DL, George SC, Shafer MM, Schauer JJ, Sioutas C (2016) Associations of primary and secondary organic aerosols with airway and systemic inflammation in an elderly panel cohort. Epidemiology (Cambridge, Mass) 21(6)

    Article  PubMed  Google Scholar 

  • Demir E, Castranova V (2016) Genotoxic effects of synthetic amorphous silica nanoparticles in the mouse lymphoma assay. Toxicol Rep 3:807–815

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Derfus AM, Chan WC, Bhatia SN (2004) Probing the cytotoxicity of semiconductor quantum dots. Nano Lett 4:11–18

    Article  CAS  PubMed  Google Scholar 

  • Dhawan A, Sharma V (2010) Toxicity assessment of nanomaterials: methods and challenges. Anal Bioanal Chem 398:589–605

    Article  CAS  PubMed  Google Scholar 

  • Dobrovolskaia MA, Aggarwal P, Hall JB, McNeil SE (2008) Preclinical studies to understand nanoparticle interaction with the immune system and its potential effects on nanoparticle biodistribution. Mol Pharm 5:487–495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dobrovolskaia MA, McNeil SE (2007) Immunological properties of engineered nanomaterials. Nat Nanotechnol 2:469

    Article  CAS  PubMed  Google Scholar 

  • Donaldson K, Brown D, Clouter A, Duffin R, MacNee W, Renwick L, Tran L, Stone V (2002) The pulmonary toxicology of ultrafine particles. J Aerosol Med 15:213–220

    Article  CAS  PubMed  Google Scholar 

  • Donaldson K, Tran L, Jimenez LA, Duffin R, Newby DE, Mills N, MacNee W, Stone V (2005) Combustion-derived nanoparticles: a review of their toxicology following inhalation exposure. Particle Fibre Toxicol 2:10

    Article  CAS  Google Scholar 

  • Elsaesser A, Howard CV (2012) Toxicology of nanoparticles. Adv Drug Deliv Rev 64:129–137

    Article  CAS  PubMed  Google Scholar 

  • Exbrayat JM, Moudilou EN and Lapied E (2015) Harmful effects of nanoparticles on animals. J Nanotechnol

    Google Scholar 

  • Fröhlich E (2012) The role of surface charge in cellular uptake and cytotoxicity of medical nanoparticles. Int J Nanomed 7:5577–5591

    Article  Google Scholar 

  • Gaskell G, Eyck TT, Jackson J, Veltri G (2005) Imagining nanotechnology: cultural support for technological innovation in Europe and the United States. Pub Underst Sci 14(1):81–90

    Google Scholar 

  • Gatoo MA, Naseem S, Arfat MY, Mahmood Dar A, Qasim K, Zubair S (2014) Physicochemical properties of nanomaterials: implication in associated toxic manifestations. BioMed Res Int. http://dx.doi.org/10.1155/2014/498420

  • Geiser M, Casaulta M, Kupferschmid B, Schulz H, Semmler-Behnke M, Kreyling W (2008) The role of macrophages in the clearance of inhaled ultrafine titanium dioxide particles. Am J Respir Cell Mol Biol 38:371–376

    Article  CAS  PubMed  Google Scholar 

  • Georgieva JV, Kalicharan D, Couraud PO, Romero IA, Weksler B, Hoekstra D, Zuhorn IS (2011) Surface characteristics of nanoparticles determine their intracellular fate in and processing by human blood–brain barrier endothelial cells in vitro. Mol Ther 19:318–325

    Article  CAS  PubMed  Google Scholar 

  • Goulaouic S, Foucaud L, Bennasroune A, Laval-Gilly P, Falla J (2008) Effect of polycyclic aromatic hydrocarbons and carbon black particles on pro-inflammatory cytokine secretion: impact of PAH coating onto particles. J Immunotoxicol 5:337–345

    Article  CAS  PubMed  Google Scholar 

  • Gui S, Zhang Z, Zheng L, Cui Y, Liu X, Li N, Sang X, Sun Q, Gao G, Cheng Z (2011) Molecular mechanism of kidney injury of mice caused by exposure to titanium dioxide nanoparticles. J Hazard Mater 195:365–370

    Article  CAS  PubMed  Google Scholar 

  • Gwinn MR, Vallyathan V (2006) Nanoparticles: health effects—pros and cons. Environ Health Perspect 114:1818

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hillyer JF, Albrecht RM (2001) Gastrointestinal persorption and tissue distribution of differently sized colloidal gold nanoparticles. J Pharm Sci 90:1927–1936

    Article  CAS  PubMed  Google Scholar 

  • Hoet PH, Brüske-Hohlfeld I, Salata OV (2004) Nanoparticles-known and unknown health risks. J Nanobiotechnol 2:12

    Article  CAS  Google Scholar 

  • Hoshino A, Fujioka K, Oku T, Nakamura S, Suga M, Yamaguchi Y, Suzuki K, Yasuhara M, Yamamoto K (2004) Quantum dots targeted to the assigned organelle in living cells. Microbiol Immunol 48:985–994

    Article  CAS  PubMed  Google Scholar 

  • Hsiao I, Huang Y (2011) Effects of various physicochemical characteristics on the toxicities of ZnO and TiO2 nanoparticles toward human lung epithelial cells. Sci Total Environ 409:1219–1228

    Article  CAS  PubMed  Google Scholar 

  • Jania P, McCarthya D, Florence AT (1994) Titanium dioxide (rutile) particle uptake from the rat GI tract and translocation to systemic organs after oral administration. Int J Pharm 105:157–168

    Article  Google Scholar 

  • Kahru A, Dubourguier HC (2010) From ecotoxicology to nanoecotoxicology. Toxicology 269:105–119

    Article  CAS  PubMed  Google Scholar 

  • Kasaai MR (2015) Nanosized particles of silica and its derivatives for applications in various branches of food and nutrition sectors. J Nanotechnol

    Google Scholar 

  • Kreuter J, Alyautdin RN, Kharkevich DA, Ivanov AA (1995) Passage of peptides through the blood–brain barrier with colloidal polymer particles (nanoparticles). Brain Res 674:171–174

    Article  CAS  PubMed  Google Scholar 

  • Kreyling WG, Semmler M, Möller W (2004) Dosimetry and toxicology of ultrafine particles. J Aerosol Med 17:140–152

    Article  CAS  PubMed  Google Scholar 

  • Kuempel ED, Geraci CL, Schulte PA (2012) Risk assessment and risk management of nanomaterials in the workplace: translating research to practice. Annals Occup Hyg 56:491–505

    Google Scholar 

  • L’Azou B, Jorly J, On D, Sellier E, Moisan F, Fleury-Feith J, Cambar J, Brochard P, Ohayon-Courtès C (2008) In vitro effects of nanoparticles on renal cells. Particle Fibre Toxicol 5:22

    Article  CAS  Google Scholar 

  • Lee S, Yun HS, Kim SH (2011) The comparative effects of mesoporous silica nanoparticles and colloidal silica on inflammation and apoptosis. Biomaterials 32:9434–9443

    Article  CAS  PubMed  Google Scholar 

  • Lin MM, Kim HH, Kim H, Dobson J, Kim DK (2010) Surface activation and targeting strategies of superparamagnetic iron oxide nanoparticles in cancer-oriented diagnosis and therapy. Nanomed 5(1):109–133

    Article  CAS  PubMed  Google Scholar 

  • Liu A, Ye B (2013) Application of gold nanoparticles in biomedical researches and diagnosis. Clin Lab 8:23–36

    Google Scholar 

  • Liu S, Wang C, Hou J, Wang P, Miao L, Fan X, You G, Xu Y (2018) Effects of Ag and Ag2S nanoparticles on denitrification in sediments. Water Res 137:28–36

    Article  CAS  PubMed  Google Scholar 

  • Lu X, Zhu T, Chen C, Liu Y (2014) Right or left: the role of nanoparticles in pulmonary diseases. Int J Mol Sci 15:17577–17600

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Maynard A (2006) Nanotechnology: a research strategy for addressing risk. Nanotechnologies, Woodrow Wilson International Center for Scholars Project on Emerging. Washington DC

    Google Scholar 

  • Moore MN (2006) Do nanoparticles present ecotoxicological risks for the health of the aquatic environment? Environ Int 32:967–976

    Article  CAS  PubMed  Google Scholar 

  • Murthy SK (2007) Nanoparticles in modern medicine: state of the art and future challenges. Int J Nanomed 2:129

    CAS  Google Scholar 

  • Murugadoss S, Lison D, Godderis L, Van Den Brule S, Mast J, Brassinne F, Sebaihi N, Hoet PH (2017) Toxicology of silica nanoparticles: an update. Arch Toxicol 91:2967–3010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nel A, Xia T, Mädler L, Li N (2006) Toxic potential of materials at the nanolevel. Science 311:622–627

    Article  CAS  PubMed  Google Scholar 

  • Nowack B, Bucheli TD (2007) Occurrence, behavior and effects of nanoparticles in the environment. Environ Pollut 150:5–22

    Article  CAS  PubMed  Google Scholar 

  • Oberdörster G, Oberdörster E, Oberdörster J (2005) Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect 113:823

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pan D, Vargas-Morales O, Zern B, Anselmo AC, Gupta V, Zakrewsky M, Mitragotri S, Muzykantov V (2016) The effect of polymeric nanoparticles on biocompatibility of carrier red blood cells. PLoS ONE 11(3):e0152074

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Park EJ, Park K (2009) Oxidative stress and pro-inflammatory responses induced by silica nanoparticles in vivo and in vitro. Toxicol Lett 184:18–25

    Article  CAS  PubMed  Google Scholar 

  • Park EJ, Bae E, Yi J, Kim Y, Choi K, Lee SH, Yoon J, Lee BC, Park K (2010) Repeated-dose toxicity and inflammatory responses in mice by oral administration of silver nanoparticles. Environ Toxicol Pharmacol 30(2):162–168

    Article  CAS  PubMed  Google Scholar 

  • Poland CA, Duffin R, Kinloch I, Maynard A, Wallace WA, Seaton A, Stone V, Brown S, MacNee W, Donaldson K (2008) Carbon nanotubes introduced into the abdominal cavity of mice show asbestos-like pathogenicity in a pilot study. Nat Nanotechnol 3:423

    Article  CAS  PubMed  Google Scholar 

  • Qian X, Peng XH, Ansari DO, Yin-Goen Q, Chen GZ, Shin DM, Yang L, Young AN, Wang MD, Nie S (2008) In vivo tumor targeting and spectroscopic detection with surface-enhanced Raman nanoparticle tags. Nat Biotechnol 26:83

    Article  CAS  PubMed  Google Scholar 

  • Schmid O, Stoeger T (2016) Surface area is the biologically most effective dose metric for acute nanoparticle toxicity in the lung. J Aerosol Sci 99:133–143

    Article  CAS  Google Scholar 

  • Schulte PA, Geraci CL, Hodson LL, Zumwalde RD, Kuempel ED, Murashov V, Martinez KF, Heidel DS (2013) Overview of risk management for engineered nanomaterials. J Phys Conf Ser 429

    Google Scholar 

  • Schuppan D, Schattenberg JM (2013) Non-alcoholic steatohepatitis: pathogenesis and novel therapeutic approaches. J Gastroenterol Hepatol 28:68–76

    Article  CAS  PubMed  Google Scholar 

  • Scott-Fordsmand JJ, Peignenburg WJGM, Semenzin E, Novack B, Hunt N, Hristozov D, Marcomini A, Irfan M-A, Jimenez AS, Landsiedel R, Tran L, Oomen AG, Bos PMJ, Hund-Rinke K (2017) Environmental risk assessment strategy for nanomaterials. Int J Environ Res Public Health 14:1251

    Article  PubMed Central  CAS  Google Scholar 

  • Seaton A, Tran L, Aitken R, Donaldson K (2009) Nanoparticles, human health hazard and regulation. J Roy Soc Interface 7(Suppl 1):S119–S129

    Google Scholar 

  • Senzui M, Tamura T, Miura K, Ikarashi Y, Watanabe Y, Fujii M (2010) Study on penetration of titanium dioxide (TiO(2)) nanoparticles into intact and damaged skin in vitro. J Toxicol Sci 35:107–113

    Article  CAS  PubMed  Google Scholar 

  • Sharma M (2010) Understanding the mechanism of toxicity of carbon nanoparticles in humans in the new millennium: a systemic review. Indian J Occup Environ Med 14(1):3–5

    Article  PubMed  PubMed Central  Google Scholar 

  • Shimida A, Kawamura N, Okajima M, Kaewamatawong T, Inoue H, Morita T (2006) Translocation pathway of the intratracheally instilled ultrafine particles from the lung into blood circulation in the mouse. Toxicol Pathol 34:949–957

    Article  Google Scholar 

  • Subbenaik SC (2016) Physical and chemical nature of nanoparticles. In: Plant nanotechnology. Springer, Cham, pp 15–27

    Chapter  Google Scholar 

  • Tinkle SS, Antonini JM, Rich BA, Robert JR, Salmen R, DePree K, Adkins EJ (2003) Skin as a route of exposure and sensitization in chronic beryllium disease. Environ Health Perspect 111:1202–1208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Truong L, Saili KS, Miller JM, Hutchison JE, Tanguay RL (2012) Persistent adult zebrafish behavioral deficits results from acute embryonic exposure to gold nanoparticles. Comp Biochem Physiol C: Toxicol Pharmacol 8:269–274

    Google Scholar 

  • Tsuji JS, Maynard AD, Howard PC, James JT, Lam C-W, Warheit DB, Santmaria AB (2005) Research strategies for safety evaluation of nanomaterials, Part IV: Risk assessment of nanoparticles. Toxicol Sci 89:42–50

    Article  PubMed  CAS  Google Scholar 

  • Vance ME, Kuiken T, Vejerano EP, McGinnis SP, Hochella MF Jr, Rejeski D, Hull MS (2015) Nanotechnology in the real world: redeveloping the nanomaterial consumer products inventory. Beilstein J Nanotechnol 6:1769

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang J, Zhou G, Chen C, Yu H, Wang T, Ma Y, Jia G, Gao Y, Li B, Sun J (2007a) Acute toxicity and biodistribution of different sized titanium dioxide particles in mice after oral administration. Toxicol Lett 168:176–185

    Article  CAS  PubMed  Google Scholar 

  • Wang JJ, Sanderson BJ, Wang H (2007b) Cyto- and genotoxicity of ultrafine TiO2 particles in cultured human lymphoblastoid cells. Mutat Res 628:99–106

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Ding B, Li B (2013) Biomimetic electrospun nanofibrous structures for tissue engineering. Mater Today 16:229–241

    Article  CAS  PubMed  Google Scholar 

  • Xia Y, Yu H, Jansen R, Seringhaus M, Baxter S, Greenbaum D, Zhao H, Gerstein M (2004) Analyzing cellular biochemistry in terms of molecular networks. Annu Rev Biochem 73:1051–1087

    Article  PubMed  CAS  Google Scholar 

  • Yin H, Too HP, Chow GM (2005) The effects of particle size and surface coating on the cytotoxicity of nickel ferrite. Biomaterials 26:5818–5826

    Article  CAS  PubMed  Google Scholar 

  • Zhang WL, Yu WW, Vicki LC, Monteiro-Riviere NA (2008) Biological interactions of quantum dot NPs in skin and in human epidermal keratinocytes. Toxicol Appl Pharmacol 228:200–211

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bushra Jamil .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jamil, B., Javed, R., Qazi, A.S., Syed, M.A. (2018). Nanomaterials: Toxicity, Risk Managment and Public Perception. In: Rai, M., Biswas, J. (eds) Nanomaterials: Ecotoxicity, Safety, and Public Perception. Springer, Cham. https://doi.org/10.1007/978-3-030-05144-0_14

Download citation

Publish with us

Policies and ethics