Skip to main content

Plasma-Catalytic Conversion of Methane

  • Chapter
  • First Online:
Plasma Catalysis

Part of the book series: Springer Series on Atomic, Optical, and Plasma Physics ((SSAOPP,volume 106))

Abstract

This chapter focuses particularly on dielectric barrier discharge (DBD) and catalyst hybrid reaction for nonthermal plasma catalysis of methane conversion. First, plasma catalysis of methane is reviewed in terms of endothermic and exothermic nature of the reaction systems where the role of nonthermal plasma is essentially different. After that, dry reforming of methane in DBD/catalyst hybrid reaction is highlighted based on our recent study. Basics of heterogeneous reaction, known as a Langmuir-Hinshelwood mechanism, are overviewed for the better understanding of nonthermal plasma and surface interaction as well as plasma-enhanced heterogeneous reactions. A thermodynamic analysis of CH4 reforming, as well as fundamental characteristics of packed-bed DBD, are also introduced to support readers understanding. Pulsed reaction spectrometry is introduced as a powerful diagnostic tool of heterogeneous reaction kinetics under the influence of nonthermal plasma. With that, plasma-enabled synergism, as well as energy efficiency, are discussed towards a deeper insight into plasma catalysis for methane conversion. Finally, concluding remark and future outlook are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Schiebahn, S., Grube, T., Robinius, M., Zhao, L., Otto, A., Kumar, B., Weber, M., & Stolten, D. (2013). In D. Stolten & V. Scherer (Eds.), Transition to renewable energy systems (pp. 813–847). Wiley-VCH.

    Google Scholar 

  2. Nozaki, T., & Okazaki, K. (2013). Non-thermal plasma catalysis of methane: Principles, energy efficiency, and applications. Catalysis Today, 211, 29–38.

    Article  Google Scholar 

  3. Kameshima, S., Tamura, K., Ishibashi, Y., & Nozaki, T. (2015). Pulsed dry methane reforming in plasma-enhanced catalytic reaction. Catalysis Today, 256, 67–75.

    Article  Google Scholar 

  4. Nozaki, T., & Okazaki, K. (2011). Innovative methane conversion technology using atmospheric pressure non-thermal plasma. Journal of the Japan Petroleum Institute, 54, 146–158.

    Article  ADS  Google Scholar 

  5. Goede, A. P. H. (2015). CO2-neutral fuels, EPJ Web of Conferences, 98, 07002.

    Article  Google Scholar 

  6. Gallagher, M. J., Jr., & Fridman, A. (2011). Plasma reforming for H2-rich synthesis gas. Fuel cells: Technologies for fuel processing, Chapter-8 (pp. 223–259). Elsevier.

    Google Scholar 

  7. Petitpas, G., Rollier, J.-D., Darmon, A., Gonzalez-Aguilar, J., Metkemeijer, R., & Fulcheri, L. (2007). A comparative study of non-thermal plasma assisted reforming technologies. International Journal of Hydrogen Energy, 32, 2848–2867.

    Article  Google Scholar 

  8. Whitehead, J. C. (2016). The known knowns, the known unknowns and the unknown unknowns. Journal of Physics D: Applied Physics, 49, 243001.

    Article  ADS  Google Scholar 

  9. Lee, D. H., Kim, K.-T., Song, Y.-H., Kang, W. S., & Jo, S. (2013). Mapping plasma chemistry in hydrocarbon fuel processing processes. Plasma Chemistry and Plasma Processing, 33, 249–269.

    Article  Google Scholar 

  10. Nozaki, T., & Okazaki, K. (2012). Plasma enhanced C1-chemistry: towards greener methane conversion. Green Processing and Synthesis, 1, 517–523.

    Article  Google Scholar 

  11. Rostrup-Nielsen, J., & Christiansen, L. J. (2011). Concepts in syngas manufacture (1st ed.). Imperial College Press.

    Google Scholar 

  12. Gutsol, A., Rabinovich, A., & Fridman, A. (2011). Combustion-assisted plasma in fuel conversion. Journal of Physics D: Applied Physics, 44, 274001.

    Article  ADS  Google Scholar 

  13. Ju, Y., & Sun, W. (2015). Plasma assisted combustion: Dynamics and chemistry. Progress in Energy and Combustion Science, 48, 21–83.

    Article  Google Scholar 

  14. Kalra, C. S., Gutsol, A. F., & Fridman, A. A. (2005). Gliding arc discharges as a source of intermediate plasma for methane partial oxidation. IEEE Transactions on Plasma Science, 33, 32–41.

    Article  ADS  Google Scholar 

  15. Mutaf-Yardimci, O., Saveliev, A. V., Fridman, A. A., & Kennedyd, L. A. (2000). Thermal and nonthermal regimes of gliding arc discharge in air flow. Journal of Applied Physics, 87, 1632–1641.

    Article  ADS  Google Scholar 

  16. Lee, D. H., Kim, K.-T., Cha, M. S., & Song, Y.-H. (2007). Optimization scheme of a rotating gliding arc reactor for partial oxidation of methane. Proceedings of the Combustion Institute, 31, 3343–3351.

    Article  Google Scholar 

  17. Lee, D. H., Kim, K.-T., Cha, M. S., & Song, Y.-H. (2010). Plasma-controlled chemistry in plasma reforming of methane. International Journal of Hydrogen Energy, 35, 10967–10976.

    Article  Google Scholar 

  18. Gutsol, A. (2010). Handbook of combustion. In M. Lackner et al. (Eds.), New technologies (Vol. 5, pp. 323–353). Weinheim: WILEY-VCH Verlag GmbH & Co. KGaA.

    Google Scholar 

  19. Rafiq, M. H., & Hustad, J. E. (2011). Synthesis gas from methane by using a plasma-assisted gliding arc catalytic partial oxidation reactor. Industrial and Engineering Chemistry Research, 50, 5428–5439.

    Article  Google Scholar 

  20. Periana, R. A., Mironov, O., Taube, D., Bhalla, G., & Jones, C. J. (2003). Catalytic, oxidative condensation of CH4 to CH3COOH in one step via CH activation. Science, 301, 814–818.

    Article  ADS  Google Scholar 

  21. York, A. P. E., Xiao, T., & Green, M. L. H. (2003). Brief overview of the partial oxidation of methane to synthesis gas. Topics in Catalysis, 22, 345–358.

    Article  Google Scholar 

  22. Bjorklund, M. C., & Carr, R. W. (2002). Enhanced methanol yields from the direct partial oxidation of methane in a simulated countercurrent moving bed chromatographic reactor. Industrial and Engineering Chemistry Research, 41, 6528–6536.

    Article  Google Scholar 

  23. Danen, W. C., Ferris, M. J., Lyman, J. L., Oldenborg, R. C., Rofer, C. K., Steit, G. E. (1991). Methane to methanol by direct partial oxidation. Preprints Petro. Chem. Div. by ASC, 36, 166–171.

    Google Scholar 

  24. Feng, W., Knopf, F. C., & Dooley, K. M. (1994). Effects of pressure, third bodies, and temperature profiling on the noncatalytic partial oxidation of methane. Energy & Fuels, 8, 815–822.

    Article  Google Scholar 

  25. Yarlagadda, P. S., Morton, L. A., Huntera, N. R., & Gesser, H. D. (1998). Direct conversion of methane to methanol in a flow reactor. Industrial and Engineering Chemistry Research, 27, 252–256.

    Article  Google Scholar 

  26. Casey, P. S., McAllister, T., & Foger, K. (1994). Selective oxidation of methane to methanol at high pressures. Industrial and Engineering Chemistry Research, 33, 1120–1125.

    Article  Google Scholar 

  27. Larkin, D. W., Lobban, L. L., & Mallinson, R. G. (2001). The direct partial oxidation of methane to organic oxygenates using a dielectric barrier discharge reactor as a catalytic reactor analog. Catalysis Today, 71, 199–210.

    Article  Google Scholar 

  28. Okazaki, K., Kishida, T., Ogawa, K., & Nozaki, T. (2002). Direct conversion from methane to methanol for high efficiency energy system with exergy regeneration. Energy Conversion and Management, 43, 1459–1468.

    Article  Google Scholar 

  29. Zhou, L. M., Xue, B., Kogelschatz, U., & Eliasson, B. (1998). Partial oxidation of methane to methanol with oxygen or air in a nonequilibrium discharge plasma. Plasma Chemistry and Plasma Processing, 18, 375–393.

    Article  Google Scholar 

  30. Agiral, A., & Gardeniers, J. G. E. H. (2010). Microreactors with electrical fields. Advances in Chemical Engineering, 38, 37–102.

    Article  Google Scholar 

  31. Lin, L., & Wang, Q. (2015). Microplasma: a new generation of technology for functional nanomaterial synthesis. Plasma Chemistry Plasma Process, 35, 925–962.

    Article  Google Scholar 

  32. Nozaki, T., Hattori, A., & Okazaki, K. (2004). Partial oxidation of methane using a microscale non-equilibrium plasma reactor. Catalysis Today, 98, 607–616.

    Article  Google Scholar 

  33. Nozaki, T., Unno, Y., Miyazaki, Y., & Okazaki, K. (2001). Optical diagnostics for determining gas temperature of reactive microdischarges in a methane-fed dielectric barrier discharge. Journal of Physics D: Applied Physics, 34, 2504–2511.

    Article  ADS  Google Scholar 

  34. Nozaki, T., Miyazaki, Y., Unno, Y., & Okazaki, K. (2001). Energy distribution and heat transfer mechanisms in atmospheric pressure non-equilibrium plasmas. Journal of Physics D: Applied Physics, 34, 3383–3390.

    Article  ADS  Google Scholar 

  35. Nozaki, T., Unno, Y., & Okazaki, K. (2002). Thermal structure of atmospheric pressure non-equilibrium plasmas. Plasma Sources Science and Technology, 11, 431–438.

    Article  ADS  Google Scholar 

  36. Nozaki, T., Ağıral, A., Yuzawa, S., Gardeniers, J. G. E. H., & Okazaki, K. (2011). A single step methane conversion into synthetic fuels using microplasma reactor. Chemical Engineering Journal, 166, 288–293.

    Article  Google Scholar 

  37. Lott, J. L., & Sliepcevich, C. M. (1967). Partial oxidation of methane at high pressures. Industrial and Engineering Chemistry Process Design and Development, 6, 67–74.

    Article  Google Scholar 

  38. Burch, R., Squire, G. D., & Tsang, S. C. (1989). Direct conversion of methane into methanol. Journal of the Chemical Society, Faraday Transactions, 85, 3561–3568.

    Article  Google Scholar 

  39. Hunter, N. R., Gesser, H. D., Morton, L. A., & Yarlagadda, P. S. (1990). Methanol formation at high pressure by the catalyzed oxidation of natural gas and by the sensitized oxidation of methane. Applied Catalysis, 57, 45–54.

    Article  Google Scholar 

  40. Chun, J.-W., & Anthony, R. G. (1993). Catalytic oxidations of methane to methanol. Industrial and Engineering Chemistry Research, 32, 259–263.

    Article  Google Scholar 

  41. Lødeng, R., Lindvåg, O. A., Søraker, P., Roterud, P. T., & Onsager, O. T. (1995). Experimental and modeling study of the selective homogeneous gas phase oxidation of methane to methanol. Industrial and Engineering Chemistry Research, 34, 1044–1059.

    Article  Google Scholar 

  42. Chellappa, A. S., Fuangfoo, S., & Viswanath, D. S. (1997). Homogeneous oxidation of methane to methanol: Effect of CO2, N2, and H2 at high oxygen conversions. Industrial and Engineering Chemistry Research, 36, 1401–1409.

    Article  Google Scholar 

  43. Chellappa, A. S., & Viswanath, D. S. (1995). Partial oxidation of methane using ferric molybdate catalyst. Industrial and Engineering Chemistry Research, 34, 1933–1940.

    Article  Google Scholar 

  44. Wang, X., Wang, Y., Tang, Q., Guo, Q., Zhang, Q., & Wan, H. (2003). MCM-41-supported iron phosphate catalyst for partial oxidation of methane to oxygenates with oxygen and nitrous oxide. Journal of Catalysis, 217, 457–467.

    Article  Google Scholar 

  45. Rasmussen, C. L., & Glarborg, P. (2008). Direct partial oxidation of natural gas to liquid chemicals: chemical kinetic modeling and global optimization. Industrial and Engineering Chemistry Research, 47, 6579–6588.

    Article  Google Scholar 

  46. Oshima, Y., Saito, M., Koda, S., & Tominaga, H. (1988). Partial oxidation of methane by laser-initiated chain reaction. Chemistry Letters, 17, 203–206.

    Article  Google Scholar 

  47. NIST Chemistry WebBook. http://webbook.nist.gov/chemistry/

  48. Eliasson, B., & Kogelschatz, U. (1991). Nonequilibrium volume plasma chemical processing. IEEE Transactions on Plasma Science, 19, 309.

    Article  ADS  Google Scholar 

  49. Goujard, V., Nozaki, T., Yuzawa, S., Ağıral, A., & Okazaki, K. (2011). Selective conversion of methane to synthetic fuels using dielectric barrier discharge contacting liquid film. Journal of Physics D: Applied Physics, 44, 274010.

    Article  Google Scholar 

  50. Nozaki, T., Abe, S., Moriyama, S., Kameshima, S., Okazaki, K., Goujard, V., & Ağıral, A. (2015). One step methane conversion to syngas by dielectric barrier discharge. Japanese Journal of Applied Physics, 54, 01AG01.

    Article  Google Scholar 

  51. Nozaki, T., Goujard, V., Yuzawa, S., Moriyama, S., Ağıral, A., & Okazari, K. (2011). Selective conversion of methane to synthetic fuels using dielectric barrier discharge contacting liquid film. Journal of Physics D: Applied Physics, 44, 274010.

    Article  ADS  Google Scholar 

  52. Nozaki, T., Tsukijihara, H., & Okazaki, K. (2006). Hydrogen enrichment of low-calorific fuels using barrier discharge enhanced Ni/γ-Al2O3 bed reactor: Thermal and nonthermal effect of nonequilibrium plasma. Energy and Fuels, 20, 339–345.

    Article  Google Scholar 

  53. Nozaki, T., Fukui, W., & Okazaki, K. (2008). Reaction enhancement mechanism of the nonthermal discharge and catalyst hybrid reaction for methane reforming. Energy and Fuels, 22, 3600–3604.

    Article  Google Scholar 

  54. Nozaki, T., Muto, N., Kado, S., & Okazaki, K. (2004). Dissociation of vibrationally excited methane on Ni catalyst: Part 1. Application to methane steam reforming. Catalysis Today, 89, 57–65.

    Article  Google Scholar 

  55. Nozaki, T., Muto, N., Kado, S., & Okazaki, K. (2004). Partial oxidation of methane using a microscale non-equilibrium plasma reactor. Catalysis Today, 89, 67–74.

    Article  Google Scholar 

  56. Lee, A. L., & Zabransky, R. F. (1990). Internal reforming development for solid oxide fuel cells. Industrial and Engineering Chemistry Research, 29, 766–773.

    Article  Google Scholar 

  57. Rostyup-Nielsen, J. R., & Hansen, J.-H. B. (1993). CO2-reforming of methane over transition metals. Journal of Catalysis, 144, 38–49.

    Article  Google Scholar 

  58. Ahmed, K., & Foger, K. (2000). Kinetics of internal steam reforming of methane on Ni/YSZ-based anodes for solid oxide fuel cells. Catalysis Today, 63, 479–487.

    Article  Google Scholar 

  59. Laosiripojana, N., & Assabumrungrat, S. (2005). Methane steam reforming over Ni/Ce–ZrO2 catalyst: Influences of Ce–ZrO2 support on reactivity, resistance toward carbon formation, and intrinsic reaction kinetics. Applied Catalysis, A: General, 290, 200–211.

    Article  Google Scholar 

  60. Wei, J., & Iglesia, E. (2004). Isotopic and kinetic assessment of the mechanism of reactions of CH4 with CO2 or H2O to form synthesis gas and carbon on nickel catalysts. Journal of Catalysis, 224, 370–383.

    Article  Google Scholar 

  61. Nozaki, T., Tsukijihara, H., Fukui, W., & Okazaki, K. (2007). Kinetic analysis of the catalyst and nonthermal plasma hybrid reaction for methane steam reforming. Energy and Fuels, 21, 2525–2530.

    Article  Google Scholar 

  62. Ravanchi, M. T., & Sahebdelfar, S. (2014). Carbon dioxide capture and utilization in petrochemical industry: potentials and challenges. Applied Petrochemical Research, 4, 63–77.

    Article  Google Scholar 

  63. Shah, Y. T., & Gardner, T. H. (2014). Dry reforming of hydrocarbon feedstocks. Catalysis Review: Science and Engineering, 56, 476–536.

    Article  Google Scholar 

  64. Gao, J., Hou, Z., Lou, H., & Zheng, X. (2011). Dry (CO2) reforming. In D. Shekhawat, J. J. Spivey, & D. A. Berry (Eds.), Fuel cells: Technologies for fuel processing (pp. 191–221). Amsterdam: Elsevier.

    Google Scholar 

  65. Wang, S., & Lu, G. Q. (1999). A comprehensive study on carbon dioxide reforming of methane over Ni/γ-Al2O3 catalysts. Industrial and Engineering Chemistry Research, 38, 2615–2625.

    Article  Google Scholar 

  66. Kogelschatz, U. (2003). Dielectric-barrier discharges: their history, discharge physics, and industrial applications. Plasma Chemistry and Plasma Processing, 23, 1–46.

    Article  Google Scholar 

  67. Tu, X., & Whitehead, J. C. (2012). Plasma-catalytic dry reforming of methane in an atmospheric dielectric barrier discharge: Understanding the synergistic effect at low temperature. Applied Catalysis B: Environmental, 125, 439–448.

    Article  Google Scholar 

  68. Tu, X., Gallon, H. J., Twigg, M. V., Gorry, P. A., & Whitehead, J. C. (2011). Dry reforming of methane over a Ni/Al2O3 catalyst in a coaxial dielectric barrier discharge reactor. Journal of Physics D: Applied Physics, 44, 274007.

    Article  ADS  Google Scholar 

  69. Kraus, M., Eliasson, B., Kogelschatz, U., & Wokaun, A. (2001). CO2 reforming of methane by the combination of dielectric-barrier discharges and catalysis. Physical Chemistry Chemical Physics, 3, 294–300.

    Article  Google Scholar 

  70. Wang, Q., Yan, B.-H., Jin, Y., & Cheng, Y. (2009). Dry reforming of methane in a dielectric barrier discharge reactor with Ni/Al2O3 Catalyst: Interaction of catalyst and plasma. Energy & Fuels, 23, 4196–4201.

    Article  Google Scholar 

  71. Long, H., Shang, S., Tao, X., Yin, Y., & Dai, X. (2008). CO2 reforming of CH4 by combination of cold plasma jet and Ni/γ-Al2O3 catalyst. International Journal of Hydrogen Energy, 33, 5510–5515.

    Article  Google Scholar 

  72. Mahammadunnisa, S., Manoj Kumar Reddy, P., Ramaraju, B., & Subrahmanyam, C. H. (2013). Catalytic nonthermal plasma reactor for dry reforming of methane. Energy Fuels, 27, 4441–4447.

    Article  Google Scholar 

  73. Pan, K. L., Chung, W. C., & Chang, M. B. (2014). Dry reforming of CH4 with CO2 to generate syngas by combined plasma catalysis. IEEE Transactions on Plasma Science, 42, 3809–3818.

    Article  ADS  Google Scholar 

  74. Kameshima, S., Tamura, K., Mizukami, R., Yamazaki, T., & Nozaki, T. (2017). Parametric analysis of plasma-assisted pulsed dry methane reforming over Ni/Al2O3 catalyst. Plasma Processes & Polymers, 14, e1600096.

    Article  Google Scholar 

  75. Kameshima, S., Mizukami, R., Yamazaki, T., Prananto, L. A., & Nozaki, T. (2018). Interfacial reactions between DBD and porous catalyst in dry methane reforming. Journal of Physics D: Applied Physics, 51, 114006.

    Article  ADS  Google Scholar 

  76. Olsbye, U., Wurzel, T., & Mleczko, L. (1997). Kinetic and reaction engineering studies of dry reforming of methane over a Ni/La/Al2O3 catalyst. Industrial and Engineering Chemistry Research, 36, 5180–5188.

    Article  Google Scholar 

  77. Osaki, T. (2015). Effect of nickel diameter on the rates of elementary steps involved in CO2 reforming of CH4 over Ni/Al2O3 catalysts. Catalysis Letters, 145, 1931–1940.

    Article  Google Scholar 

  78. Jablonski, G. A., Geurts, F. W., Sacco, A., Jr., & Biederman, R. R. (1992). Carbon deposition over Fe, Ni, and Co foils from CO-H2-CH4-CO2-H2O, CO-CO2, CH4-H2, and CO-H2-H2O gas mixtures: I. Morphology. Carbon, 30, 87–98.

    Article  Google Scholar 

  79. Puretzky, A. A., Geohegan, D. B., Jesse, S., Ivanov, I. N., & Eres, G. (2005). In situ measurements and modeling of carbon nanotube array growth kinetics during chemical vapor deposition. Applied Physics A: Materials Science & Processing, 81, 223–240.

    Article  ADS  Google Scholar 

  80. Dombrowski, E., Peterson, E., Sesto, D. D., & Utz, A. L. (2015). Precursor-mediated reactivity of vibrationally hot molecules: Methane activation on Ir(1 1 1). Catalysis Today, 244, 10–18.

    Article  Google Scholar 

  81. Neyts, E. C. (2016). Plasma-surface interactions in plasma catalysis. Plasma Chemistry and Plasma Processing, 36, 185–212.

    Article  Google Scholar 

  82. Falkenstein, Z., & Coogan, J. J. (1997). Microdischarge behaviour in the silent discharge of nitrogen - oxygen and water - air mixtures. Journal of Physics D: Applied Physics, 30, 817–825.

    Article  ADS  Google Scholar 

  83. Du, Y., Tamura, K., Moore, S., Peng, Z., Nozaki, T., & Bruggeman, P. J. (2017). CO(B1Σ+→A1Π) Angstrom system for gas temperature measurements in CO2 containing plasmas. Plasma Chemistry and Plasma Processing, 37, 29–41.

    Google Scholar 

  84. Kim, H.-H., Teramoto, Y., Sano, T., Negishi, N., & Ogata, A. (2015). Effects of Si/Al ratio on the interaction of nonthermal plasma and Ag/HY catalysts. Applied Catalysis B: Environmental, 166–167, 9–17.

    Google Scholar 

  85. Coogan, J. J., & Sappey, A. D. (1996). Distribution of OH within silent discharge plasma reactors. IEEE Transactions on Plasma Science, 24, 91–92.

    Article  ADS  Google Scholar 

  86. Wang, W., & Gong, J. (2011). Methanation of carbon dioxide: an overview. Frontiers of Chemical Science and Engineering, 5, 2–10.

    Article  Google Scholar 

  87. Aerts, R., Somers, W., & Bogaerts, A. (2015). Carbon dioxide splitting in a dielectric barrier discharge plasma: A combined experimental and computational study. ChemSusChem, 8, 702–716.

    Article  Google Scholar 

  88. Kim, H.-H., Teramoto, Y., Negishi, N., & Ogata, A. (2015). A multidisciplinary approach to understand the interactions of nonthermal plasma and catalyst: A review. Catalysis Today, 256, 13–22.

    Article  Google Scholar 

  89. Zhang, Y.-R., Van Laer, K., Neyts, E. C., & Bogaerts, A. (2016). Can plasma be formed in catalyst pores? A modeling investigation. Applied Catalysis B: Environmental, 185, 56–67.

    Article  Google Scholar 

  90. Maurer, H. R., & Kersten, H. (2011). On the heating of nano- and microparticles in process plasmas. Journal of Physics D: Applied Physics, 44, 174029.

    Article  ADS  Google Scholar 

  91. Kramer, N. J., Anthony, R. J., Mamunuru, M., Aydil, E. S., & Kortshagen, U. R. (2014). Plasma-induced crystallization of silicon nanoparticles. Journal of Physics D: Applied Physics, 47, 075202.

    Article  ADS  Google Scholar 

  92. Neyts, E. C., Ostrikov, K., Sunkara, M. K., & Bogaerts, A. (2015). Synergistic effects at the nanoscale. Chemical Reviews, 115, 13408–13446.

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by the Japan Society for the Promotion of Science (JSPS) KAKENHI (JP16J09876). S.K. acknowledges JSPS for providing Research Fellowship for Young Scientists (DC1); Z.R. acknowledges financial support from the program of China Scholarships Council (No.201707040056). T.N. would like to thank Mr. Tinnapop Moonmuang (Mechanical Engineering, Chiang Mai University) for the experimental support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomohiro Nozaki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nozaki, T., Kameshima, S., Sheng, Z., Tamura, K., Yamazaki, T. (2019). Plasma-Catalytic Conversion of Methane. In: Tu, X., Whitehead, J., Nozaki, T. (eds) Plasma Catalysis. Springer Series on Atomic, Optical, and Plasma Physics, vol 106. Springer, Cham. https://doi.org/10.1007/978-3-030-05189-1_8

Download citation

Publish with us

Policies and ethics