Skip to main content

Spark Plasma Sintering of NiTi Shape Memory Alloy

  • Chapter
  • First Online:
Spark Plasma Sintering of Materials

Abstract

The NiTi shape memory alloy has a potential effect on smart fabrications such as actuators, biomedical, structural and aerospace applications. But the implementation of such SMA in these fields is very less, since an in-depth understanding of the working principle, thermomechanical behaviour and phase transformation characteristics of SMA is needed. The SMAs are functioning in two phases such as austenite and martensite which can be executed by thermal and mechanical loads applied on them. The parent structure of austenite is subjected to deformation and transformed into martensite due to thermomechanical load; when the load is removed, it is exposed to its initial austenite structure. This chapter reports the immaculate concepts of the mechanism of NiTi SMA, fabrication methods, applications and a detailed study of a rapid manufacturing tool of spark plasma sintering (SPS).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Arunkumar S, Kumaravel P, Velmurugan C, Senthilkumar V (2018) Microstructures and mechanical properties of nanocrystalline NiTi intermetallics formed by mechanosynthesis. Int J Miner Metall Mater 25(1):80–87

    Article  CAS  Google Scholar 

  • Bonifacio CS, Rufner JF, Holland TB, Van Benthem K (2012) In situ transmission electron microscopy study of dielectric breakdown of surface oxides during electric field-assisted sintering of nickel nanoparticles. Appl Phys Lett 101:4583–4586

    Article  Google Scholar 

  • Bram M, Ahmad-Khanloua A, Heckmannb A, Fuchsa B, Buchkremera HP, Stovera D et al (2002) Powder metallurgical fabrication processes for NiTi shape memory alloy parts. Mater Sci Eng A 337:254–263

    Article  Google Scholar 

  • Buehler WJ, Gilfrich JV, Wiley RC (1963) Effect of low-temperature phase changes on the mechanical properties of alloys near composition TiNi. J. Appl. Phys., 34(5):1475–1477

    Google Scholar 

  • Chen F, Tong YX, Lu XL, Wang X, Tian B, Li L et al (2011) Effect of graphite addition on martensitic transformation and damping behavior of NiTi shape memory alloy. Mater Lett 65(7):1073–1075

    Article  CAS  Google Scholar 

  • Cheng Y, Cui Z, Cheng L, Gong D, Wang W (2017) Effect of particle size on densification of pure magnesium during spark plasma sintering. Adv Powder Technol 28(4):1129–1135

    Article  CAS  Google Scholar 

  • Chu CL, Chung PH, Lin WSD (2005) Fabrication and properties of porous NiTi shape memory alloys for heavy load-bearing medical applications. J Mater Process Technol 169(1):103–107

    Article  CAS  Google Scholar 

  • Cristea CD, Lungu M, Balagurov AM, Marinescu V, Culicov O, Sbarcea G, Cirstea V (2015) Shape memory NiTi and NiTiCu alloys obtained by spark plasma sintering process. In: Advanced engineering forum, vol. 13. Trans Tech Publications, pp 83–90

    Google Scholar 

  • De Santis S, Trochu F, Ostiguy G (2001) Stress-strain hysteresis and damping in MnCu and NiTi alloys. Metall Mater Trans A 32(10):2489–2498

    Article  Google Scholar 

  • Duerig TW, Pelton AR (2002) An overview of superelastic stent design. In: Materials science forum, vol 394. Trans Tech Publications, Aedermannsdorf, pp 1–8

    Google Scholar 

  • Elahinia M (2016) Shape memory alloy actuators: design, fabrication and experimental evaluation, 1st edn. John Wiley and Sons ltd, Chichester

    Google Scholar 

  • Elahinia MH, Hashemi M, Tabesh M, Bhaduri SB (2012) Manufacturing and processing of NiTi implants: a review. Prog Mater Sci 57(5):911–946

    Article  CAS  Google Scholar 

  • Elahinia M, Moghaddam NS, Andani MT, Amerinatanzi A, Bimber BA, Hamilton RF (2016) Fabrication of NiTi through additive manufacturing: A review. Prog Mater Sci 83:630–663

    Article  CAS  Google Scholar 

  • Fischer-Cripps AC (2011a) Factors affecting nanoindentation test data. In: Nanoindentation. Springer, New York, pp 77–104

    Chapter  Google Scholar 

  • Fischer-Cripps AC (2011b) Contact mechanics. In: Nanoindentation. Springer, New York, p 2

    Google Scholar 

  • Fremond M, Miyazaki S (2014) Shape memory alloys, vol 351. Springer, New York

    Google Scholar 

  • Frenzel J, George EP, Dlouhy A, Somsen C, Wagner MX, Eggeler G (2010) Influence of Ni on martensitic phase transformations in NiTi shape memory alloys. Acta Mater 58(9):3444–3458

    Article  CAS  Google Scholar 

  • Fu Y, Moochhala S, Shearwood C (2004) Spark plasma sintering of TiNi nanopowders. In: BioMEMS and nanotechnology, vol. 5275. International Society for Optics and Photonics, pp 9–18

    Google Scholar 

  • Gou L, Liu Y, Ng TY (2015) Effect of Cu Content on Atomic Positions of Ti50Ni50-xCux Shape Memory Alloys Based on Density Functional Theory Calculations. Metals 5(4):2222–2235

    Article  CAS  Google Scholar 

  • Groza JR (2007) Nanocrystalline powder consolidation methods. In: Koch CC (ed) Nanostructured materials, 2nd edn. William Andrew Publishing, Norwich, pp 173–233

    Chapter  Google Scholar 

  • GurtSantanach J, Weibel A, Estourne’s C, Yang Q, Laurent C, Peigney A (2011) Spark plasma sintering of alumina: study of parameters, formal sintering analysis and hypotheses on the mechanism(s) involved in densification and grain growth. Acta Mater 59:1400–1408

    Article  Google Scholar 

  • Jani JM, Leary M, Subic A, Gibson MA (2014) A review of shape memory alloy research, applications and opportunities. Mater Des 56:1078–1113

    Article  Google Scholar 

  • Jiang SY, Zhao YN, Zhang YQ, Li HU, Liang YL (2013) Effect of solution treatment and aging on microstructural evolution and mechanical behavior of NiTi shape memory alloy. Trans Nonferrous Met Soc China 23(12):3658–3667

    Article  CAS  Google Scholar 

  • Johnson KL (1974) Contact mechanics 1985. Cambridge University Press, Cambridge, pp 57–63

    Google Scholar 

  • Karimzadeh M, Aboutalebi MR, Salehi MT, Abbasi SM, Morakabati M (2016) Adjustment of aging temperature for reaching superelasticity in highly Ni-rich Ti-51.5 Ni NiTi shape memory alloy. Mater Manuf Process 31(8):1014–1021

    Article  CAS  Google Scholar 

  • Khalil-Allafi J, Dlouhy A, Eggeler G (2002) Ni4Ti3-precipitation during aging of NiTi shape memory alloys and its influence on martensitic phase transformations. Acta Mater 50(17):4255–4274

    Article  CAS  Google Scholar 

  • Kumar PK, Lagoudas DC (2008) Introduction to shape memory alloys. In: Shape memory alloys. Springer, New York, pp 1–51

    Google Scholar 

  • Laptev AV (2007) Theory and technology of sintering, thermal and chemicothermal treatment. Powder Metall Met Ceram 46(7–8):317–324

    Article  CAS  Google Scholar 

  • Lee J, Hwang J, Lee D, Ryu HJ, Hong SH (2014) Enhanced mechanical properties of spark plasma sintered NiTi composites reinforced with carbon nanotubes. J Alloys Compd 617:505–510

    Article  CAS  Google Scholar 

  • Li BY, Rong LJ, Li YY (2000) Stress–strain behavior of porous Ni–Ti shape memory intermetallics synthesized from powder sintering. Intermetallics 8(5–6):643–646

    Article  CAS  Google Scholar 

  • Li YH, Rong LJ, Li YY (2002) Compressive property of porous NiTi alloy synthesized by combustion synthesis. J Alloys Compd 345(1–2):271–274

    Article  CAS  Google Scholar 

  • Li P, Karaca HE, Cheng YT (2015) Spherical indentation of NiTi-based shape memory alloys. J Alloys Compd 651:724–730

    Article  CAS  Google Scholar 

  • Ma J, Karaman I, Noebe RD (2010) High temperature shape memory alloys. Int Mater Rev 55(5):257–315

    Article  CAS  Google Scholar 

  • Manosa L, Jurado M, Planes A, Zarestky J, Lograsso T, Stassis C (1994) Elastic constants of bcc. Cu-Al-Ni alloys. Phys Rev B 48:9969

    Article  Google Scholar 

  • Mitchell MR, Jerina KL (2007) Fatigue and fracture of medical metallic materials and devices (No. 1481). ASTM International, p 18

    Google Scholar 

  • Nakata Y, Tadaki T, Shimizu K (1998) In: Inoue K, Mukherjee K, Otsuka K, Chen H (eds) Displacive phase transformations and their applications in materials engineering. TMS, Warrendale, p 187

    Google Scholar 

  • Ni W, Cheng YT, Grummon DS (2002) Recovery of microindents in a nickel–titanium shape-memory alloy: a self-healing effect. Appl Phys Lett 80(18):3310–3312

    Article  CAS  Google Scholar 

  • Orru R, Licheri R, Locci AM, Cincotti A, Cao G (2009) Consolidation/synthesis of materials by electric current activated/assisted sintering. Mater Sci Eng R 63(4–6):127–287

    Article  Google Scholar 

  • Otsuka K, Ren X (2005) Physical metallurgy of Ti–Ni-based shape memory alloys. Prog Mater Sci 50(5):511–678

    Article  CAS  Google Scholar 

  • Patoor E, Lagoudas DC, Entchev PB, Brinson LC, Gao X (2006) Shape memory alloys, Part I: General properties and modeling of single crystals. Mech Mater 38(5–6):391–429

    Article  Google Scholar 

  • Predki W, Knopik A, Bauer B (2008) Engineering applications of NiTi shape memory alloys. Mater Sci Eng A 481:598–601

    Article  Google Scholar 

  • Qiu Y, Young ML, Nie X (2015) High strain rate compression of martensitic NiTi shape memory alloys. Shape Memo Superelast 1(3):310–318

    Article  Google Scholar 

  • Qiu Y, Young ML, Nie X (2017) High Strain Rate Compression of Martensitic NiTi Shape Memory Alloy at Different Temperatures. Metal Mater Trans A 48(2):601–608

    Article  CAS  Google Scholar 

  • Rao A, Srinivasa AR, Reddy JN (2015) Design of shape memory alloy (SMA) actuators, vol 3. Springer, Heidelberg

    Book  Google Scholar 

  • Resnina N, Belyaev S, Shelyakov A, Ubyivovk E (2017) Violation of the sequence of martensite crystals formation on cooling and their shrinking on heating during B2↔B19 martensitic transformation in Ti40.7Hf9.5Ni44.8Cu5 shape-memory alloy. Phase Transit 90(3):289–298

    Article  CAS  Google Scholar 

  • Seelecke S, Muller I (2004) Shape memory alloy actuators in smart structures: Modeling and simulation. Appl Mech Rev 57(1):23–46

    Article  Google Scholar 

  • Shao Y, Guo F, Ren Y, Zhang J, Yang H, Jiang D et al (2017) NiTi-enabled composite design for exceptional performances. Shape Memo Superelast 3(1):67–81

    Article  Google Scholar 

  • Shearwood C, Fu YQ, Yu L, Khor KA (2005) Spark plasma sintering of TiNi nano-powder. Scr Mater 52(6):455–460

    Article  CAS  Google Scholar 

  • Shishkovsky I, Yadroitsev I, Smurov I (2012) Direct selective laser melting of nitinol powder. Phys Procedia 39:447–454

    Article  CAS  Google Scholar 

  • Stoeckel D (1995) The shape memory effect-phenomenon, alloys and applications. In: Proceedings: Shape Memory Alloys for Power Systems EPRI (1), Fremont, pp 1–13

    Google Scholar 

  • Sun L, Huang WM (2009) Nature of the multistage transformation in shape memory alloys upon heating. Met Sci Heat Treat 51(11):573–578

    Article  CAS  Google Scholar 

  • Tadaki T (1998) Cu-based shape memory alloys. In: Otsuka K, Wayman CM (eds) Shape memory materials. Cambridge University Press, Cambridge, pp 97–116

    Google Scholar 

  • Tadayyon G, Mazinani M, Guo Y, Zebarjad SM, Tofail SA, Biggs MJ (2016) The effect of annealing on the mechanical properties and microstructural evolution of Ti-rich NiTi shape memory alloy. Mater Sci Eng A 662:564–577

    Article  CAS  Google Scholar 

  • Tang W (1997) Thermodynamic study of the low-temperature phase B19’ and the martensitic transformation in near-equiatomic Ti-Ni shape memory alloys. Metall Trans 28A:537

    Article  Google Scholar 

  • Tokita M (2013) Handbook of advanced ceramics: Chapter 11.2. 3. Spark Plasma Sintering (SPS) method, systems, and applications. Elsevier Inc. Chapters

    Google Scholar 

  • Velmurugan C, Senthilkumar V, Dinesh S, Arulkirubakaran D (2017) Machining of NiTi-shape memory alloys-A review. Mach Sci Technol. https://doi.org/10.1080/10910344.2017.1365894

  • Wagner MX, Dey SR, Gugel H, Frenzel J, Somsen C, Eggeler G (2010) Effect of low-temperature precipitation on the transformation characteristics of Ni-rich NiTi shape memory alloys during thermal cycling. Intermetallics 18(6):1172–1179

    Article  CAS  Google Scholar 

  • Wen YH, Peng HB, Raabe D, Gutierrez-urrutia I, Chen J, Du YY (2014) Large recovery strain in Fe–Mn–Si-based shape memory steels obtained by engineering annealing twin boundaries. Nat Commun 5:4964

    Article  CAS  Google Scholar 

  • Yamamoto T, Sakuma T, Uchida K, Sutou Y, Yamauchi K (2007) Effect of heat aging on thermal and mechanical properties of Ti-Ni-Nb shape memory alloy. Mater Trans 48(3):439–444

    Article  CAS  Google Scholar 

  • Ye LL, Liu ZG, Raviprasad K, Quan MX, Umemoto M, Hu ZQ (1998) Consolidation of MA amorphous NiTi powders by spark plasma sintering. Mater Sci Eng A 241(1–2):290–293

    Article  Google Scholar 

  • Zhang L, Zhang YQ, Jiang YH, Zhou R (2015) Superelastic behaviors of biomedical porous NiTi alloy with high porosity and large pore size prepared by spark plasma sintering. J Alloys Compd 644:513–522

    Article  CAS  Google Scholar 

  • Zhao Y, Taya M, Kang Y, Kawasaki A (2005) Compression behavior of porous NiTi shape memory alloy. Acta Mater 53(2):337–343

    Article  CAS  Google Scholar 

  • Zhou N, Shen C, Wagner MX, Eggeler G, Mills MJ, Wang Y (2010) Effect of Ni4Ti3 precipitation on martensitic transformation in Ti–Ni. Acta Mater 58(20):6685–6694

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Senthilkumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Senthilkumar, V., Velmurugan, C. (2019). Spark Plasma Sintering of NiTi Shape Memory Alloy. In: Cavaliere, P. (eds) Spark Plasma Sintering of Materials. Springer, Cham. https://doi.org/10.1007/978-3-030-05327-7_22

Download citation

Publish with us

Policies and ethics