Skip to main content

Functionalized Carbon Nanomaterial for Artificial Bone Replacement as Filler Material

  • Chapter
  • First Online:
Sustainable Polymer Composites and Nanocomposites

Abstract

Recently, significant advancement has achieved in the field of bone tissue engineering for the preparation of artificial bone in order to treat defects or bone loss. Biomaterials mainly used to construct devices that are associated with the biological system to co-exist for long-lasting use with limited chance of failures. Most well-known biomaterials used for bone implants include metals, ceramics, and polymers. At present carbon nanomaterials, particularly carbon nanotubes are promising biomaterials for artificial bone due to their remarkable mechanical, electrical and thermal strength. However, in biomedical applications, carbon nanotubes are restricted to use alone due to issues like toxicity, abacas sheets formation and aggregation. Functionalization techniques help to avoid such issues. Functionalization techniques are categorized into covalent and non-covalent approaches. Covalent approach primarily focuses on tailoring the sidewalls to proceed with the modification, whereas non-covalent are constrained to alter the structure. Furthermore, CNTs are among remarkable biomaterials, and immense successful studies have been conducted to analyse the effects of CNTs with/without polymers in both vivo and in vitro experiments. The purpose of this chapter is to use functionalized carbon nanomaterial, mainly CNTs as filler material for artificial bone replacement. Therefore, this chapter reviewed the bones structure and mechanics, artificial bone history, carbon nanotubes synthesis and functionalization techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bawa R, Audette GF, Rubinstein I (2016) Handbook of clinical nanomedicine: nanoparticles, imaging, therapy, and clinical applications. CRC Press, Boca Raton

    Book  Google Scholar 

  2. Adlakha-Hutcheon G, Khaydarov R, Korenstein R, Varma R, Vaseashta A, Stamm H et al (2009) Nanomaterials, nanotechnology. Nanomaterials: Risks and Benefits. Springer, Berlin, pp 195–207

    Book  Google Scholar 

  3. Schaefer H-E (2010) Nanoscience: the science of the small in physics, engineering, chemistry, biology and medicine. Springer, Berlin Heidelberg, pp 615–735

    Book  Google Scholar 

  4. Yang Y, Yang X, Yang Y, Yuan Q (2018) Aptamer-functionalized carbon nanomaterials electrochemical sensors for detecting cancer relevant biomolecules. Carbon 129:380–395

    Article  CAS  Google Scholar 

  5. Liu Y, Dong X, Chen P (2012) Biological and chemical sensors based on graphene materials. Chem Soc Rev 41(6):2283–2307

    Article  CAS  Google Scholar 

  6. Trung TQ, Lee NE (2016) Flexible and stretchable physical sensor integrated platforms for wearable human-activity monitoring and personal healthcare. Adv Mater 28(22):4338–4372

    Article  CAS  Google Scholar 

  7. Yang W, Ratinac KR, Ringer SP, Thordarson P, Gooding JJ, Braet F (2010) Carbon nanomaterials in biosensors: should you use nanotubes or graphene? Angew Chem Int Ed 49(12):2114–2138

    Article  CAS  Google Scholar 

  8. Weiss NO, Zhou H, Liao L, Liu Y, Jiang S, Huang Y et al (2012) Graphene: an emerging electronic material. Adv Mater 24(43):5782–5825

    Article  CAS  Google Scholar 

  9. Backes C (2012) Introduction: noncovalent functionalization of carbon nanotubes: fundamental aspects of dispersion and separation in water. Springer, Berlin Heidelberg, pp 1–37

    Book  Google Scholar 

  10. Zamolo VA, Vazquez E, Prato M (2013) Carbon nanotubes: synthesis, structure, functionalization, and characterization. In: Siegel JS, Wu Y-T (eds) Polyarenes II. 350, pp 65–109, Springer, Cham

    Google Scholar 

  11. Yadav Y, Kunduru V, Prasad S (2008) Carbon nanotubes: synthesis and characterization. In: Morris JE (ed) Nanopackaging: nanotechnologies and electronics packaging. Springer US, Boston, MA, pp 325–344

    Chapter  Google Scholar 

  12. Rezakazemi M, Amooghin AE, Montazer-Rahmati MM, Ismail AF, Matsuura T (2014) State-of-the-art membrane based CO2 separation using mixed matrix membranes (MMMs): an overview on current status and future directions. Prog Polym Sci 39(5):817–861

    Article  CAS  Google Scholar 

  13. Kong J, Zhou C, Morpurgo A, Soh HT, Quate CF, Marcus C et al (1999) Synthesis, integration, and electrical properties of individual single-walled carbon nanotubes. Appl Phys A 69(3):305–308

    Article  CAS  Google Scholar 

  14. Sun H, She P, Lu G, Xu K, Zhang W, Liu Z (2014) Recent advances in the development of functionalized carbon nanotubes: a versatile vector for drug delivery. J Mater Sci 49(20):6845–6854

    Article  CAS  Google Scholar 

  15. Liu Y, Zhao Y, Sun B, Chen C (2012) Understanding the toxicity of carbon nanotubes. Acc Chem Res 46(3):702–713

    Article  CAS  Google Scholar 

  16. Schafer FQ, Qian SY, Buettner GR (2000) Iron and free radical oxidations in cell membranes. Cellular and molecular biology (Noisy-le-Grand, France) 46(3):657

    Google Scholar 

  17. Basiuk EV, Basiuk VA (2015) Solvent-free functionalization of carbon nanomaterials. In: Basiuk VA, Basiuk EV (eds) Green processes for nanotechnology: from inorganic to bioinspired nanomaterials. Springer, Cham, pp 163–205

    Google Scholar 

  18. Krishna V, Stevens N, Koopman B, Moudgil B (2010) Optical heating and rapid transformation of functionalized fullerenes. Nat Nanotechnol 5(5):330

    Article  CAS  Google Scholar 

  19. Bai RG, Ninan N, Muthoosamy K, Manickam S (2017) Graphene: a versatile platform for nanotheranostics and tissue engineering. Progress in Materials Science

    Google Scholar 

  20. Egli RJ, Luginbuehl R (2012) Tissue engineering-nanomaterials in the musculoskeletal system. Swiss Med Wkly 142:w13647

    Google Scholar 

  21. Cowin SC (2001) Bone mechanics handbook. CRC Press, Boca Roton

    Book  Google Scholar 

  22. Currey J (2002) Bones: structure and mechanics. Princeton University Press, Princeton, NJ

    Google Scholar 

  23. Behari J (1991) Solid state bone behaviour. Prog Biophys Mol Biol 56(1):1–41

    Article  CAS  Google Scholar 

  24. Rouhi G (2006) Theoretical aspects of bone remodeling and resorption processes. Ph.D. Thesis, University of Calgary

    Google Scholar 

  25. Bartel D, Davy D, Keaveny T (2006) Orthopaedic biomechanics mechanics and design in musculoskeletal systems. Pearson Education Inc., Upper Saddle River

    Google Scholar 

  26. Lakes R, Saha S (1979) Cement line motion in bone. Science 204(4392):501–503

    Article  CAS  Google Scholar 

  27. van der Meulen MC (2000) Mechanics in skeletal development, adaptation and disease. Philos Trans Royal Soc Lond A Math Phys Eng Sci 358(1766):565–578

    Article  Google Scholar 

  28. Guldberg R, Caldwell N, Guo X, Goulet R, Hollister S, Goldstein S (1997) Mechanical stimulation of tissue repair in the hydraulic bone chamber. J Bone Miner Res 12(8):1295–1302

    Article  CAS  Google Scholar 

  29. Burger EH, Klein-Nulend J (1999) Mechanotransduction in bone—role of the lacuno-canalicular network. FASEB J 13(9001):S101–S12

    Article  CAS  Google Scholar 

  30. Parfitt A (1995) Problems in the application of in vitro systems to the study of human bone remodeling. Calcif Tissue Int 56(1):S5–S7

    Article  CAS  Google Scholar 

  31. Standring S (2015) Gray’s anatomy e-book: the anatomical basis of clinical practice. Elsevier, Amsterdam

    Google Scholar 

  32. Patka P, Haarman HJTM, van der Elst M, Bakker FC (2000) Artificial bone. In: Wise DL, Trantolo DJ, Lewandrowski K-U, Gresser JD, Cattaneo MV, Yaszemski MJ (eds) Biomaterials engineering and devices: human applications, vol 2, Orthopedic, Dental, and Bone Graft Applications, pp 95–109. 2 Totowa, Humana Press, NJ

    Google Scholar 

  33. Autograft (2001) In: Schwab M (ed) Encyclopedic reference of cancer, p 83. Springer, Berlin, Heidelberg

    Google Scholar 

  34. Isograft (2001) In: Schwab M (ed). Encyclopedic reference of cancer, p 468. Springer, Berlin, Heidelberg

    Google Scholar 

  35. Allograft (2001) In: Schwab M (ed) Encyclopedic reference of cancer, p 38. Springer, Berlin Heidelberg

    Google Scholar 

  36. Kabbashi N, Jamal Ibrahim D, Rosli NF (2011) Statistical analysis for removal of cadmium from aqueous solution at high pH. Aust J Basic Appl Sci 5(6):440–446

    CAS  Google Scholar 

  37. Syahrom A, Kadir MRA, Abdullah J, Öchsner A (2013) Permeability studies of artificial and natural cancellous bone structures. Med Eng Phys 35(6):792–799

    Article  Google Scholar 

  38. Saijo H, Kanno Y, Mori Y, Suzuki S, Ohkubo K, Chikazu D et al (2011) A novel method for designing and fabricating custom-made artificial bones. Int J Oral Maxillofac Surg 40(9):955–960

    Article  CAS  Google Scholar 

  39. Kamachimudali U, Sridhar T, Raj B (2003) Corrosion of bio implants. Sadhana 28(3–4):601–637

    Article  Google Scholar 

  40. Trebše R (2012) Biomaterials in artificial joint replacements. Infected total joint arthroplasty. Springer, Berlin, pp 13–21

    Book  Google Scholar 

  41. Virtanen S, Milošev I, Gomez-Barrena E, Trebše R, Salo J, Konttinen Y (2008) Special modes of corrosion under physiological and simulated physiological conditions. Acta Biomater 4(3):468–476

    Article  CAS  Google Scholar 

  42. De Volder MF, Tawfick SH, Baughman RH, Hart AJ (2013) Carbon nanotubes: present and future commercial applications. Science 339(6119):535–539

    Article  CAS  Google Scholar 

  43. Grace T (2003) An introduction to carbon nanotubes. Summer, Stanford University

    Google Scholar 

  44. Pénicaud A (2014) Solubilization of fullerenes, carbon nanotubes, and graphene. Making and exploiting fullerenes, graphene, and carbon nanotubes. Springer, Berlin, pp 1–35

    Google Scholar 

  45. Rao CK, Rao L (2017) Critical velocities in fluid-conveying single-walled carbon nanotubes embedded in an elastic foundation. J Appl Mech Tech Phys 58(4):743–752

    Article  CAS  Google Scholar 

  46. Yu O, Daoyong L, Weiran C, Shaohua S, Li C (2009) A temperature window for the synthesis of single-walled carbon nanotubes by catalytic chemical vapor deposition of CH 4 over Mo 2-Fe 10/MgO catalyst. Nanoscale Res Lett 4(6):574

    Article  CAS  Google Scholar 

  47. Qingwen L, Hao Y, Yan C, Jin Z, Zhongfan L (2002) A scalable CVD synthesis of high-purity single-walled carbon nanotubes with porous MgO as support material. J Mater Chem 12(4):1179–1183

    Article  CAS  Google Scholar 

  48. Ahmed W, Jackson MJ (2016) Surgical tools and medical devices. Springer, Berlin

    Book  Google Scholar 

  49. Radushkevich L, Lukyanovich V (1952) Carbon structure formed under thermal decomposition of carbon monoxide on iron. Zh Fiz Khim 26(1):88–95

    CAS  Google Scholar 

  50. Shin Y-H, Song J-W, Lee E-S, Han C-S (2007) Imaging characterization of carbon nanotube tips modified using a focused ion beam. Appl Surf Sci 253(16):6872–6877

    Article  CAS  Google Scholar 

  51. Vajtai R (2013) Springer handbook of nanomaterials. Springer Science & Business Media, Berlin

    Book  Google Scholar 

  52. Huczko A (2002) Synthesis of aligned carbon nanotubes. Appl Phys A 74(5):617–638

    Article  CAS  Google Scholar 

  53. Chauhan SK, Shukla A, Dutta S, Gangopadhyay S, Bharadwaj LM (2012) Carbon nanotubes for environmental protection. Springer, Environmental Chemistry for a Sustainable World, pp 83–98

    Google Scholar 

  54. Syrgiannis Z, Melchionna M, Prato M (2015) Covalent carbon nanotube functionalization. In: Kobayashi S, Müllen K (eds) Encyclopedia of polymeric nanomaterials. Springer, Berlin Heidelberg, pp 480–487

    Chapter  Google Scholar 

  55. Yang Y, Qiu S, Xie X, Wang X, Li RKY (2010) A facile, green, and tunable method to functionalize carbon nanotubes with water-soluble azo initiators by one-step free radical addition. Appl Surf Sci 256(10):3286–3292

    Article  CAS  Google Scholar 

  56. Mananghaya MR, Santos GN, Yu DN (2017) Solubility of amide functionalized single wall carbon nanotubes: a quantum mechanical study. J Mol Liq 242:1208–1214

    Article  CAS  Google Scholar 

  57. Giliopoulos DJ, Triantafyllidis KS, Gournis D (2013) Chemical functionalization of carbon nanotubes for dispersion in epoxy matrices. In: Paipetis A, Kostopoulos V (eds) Carbon nanotube enhanced aerospace composite materials: a new generation of multifunctional hybrid structural composites, pp 155–183. Springer: Dordrecht, Netherlands

    Google Scholar 

  58. Erol O, Uyan I, Hatip M, Yilmaz C, Tekinay AB, Guler MO (2017) Recent advances in bioactive 1D and 2D carbon nanomaterials for biomedical applications. Nanomedicine: Nanotechnology, Biology and Medicine

    Google Scholar 

  59. Liang S, Li G, Tian R (2016) Multi-walled carbon nanotubes functionalized with a ultrahigh fraction of carboxyl and hydroxyl groups by ultrasound-assisted oxidation. J Mater Sci 51(7):3513–3524

    Article  CAS  Google Scholar 

  60. Battigelli A, Ménard-Moyon C, Da Ros T, Prato M, Bianco A (2013) Endowing carbon nanotubes with biological and biomedical properties by chemical modifications. Adv Drug Deliv Rev 65(15):1899–1920

    Article  CAS  Google Scholar 

  61. Zhao Z, Yang Z, Hu Y, Li J, Fan X (2013) Multiple functionalization of multi-walled carbon nanotubes with carboxyl and amino groups. Appl Surf Sci 276:476–481

    Article  CAS  Google Scholar 

  62. Khani H, Moradi O (2013) Influence of surface oxidation on the morphological and crystallographic structure of multi-walled carbon nanotubes via different oxidants. J Nanostruct Chem 3(1):73

    Article  Google Scholar 

  63. Martín O, Gutierrez HR, Maroto-Valiente A, Terrones M, Blanco T, Baselga J (2013) An efficient method for the carboxylation of few-wall carbon nanotubes with little damage to their sidewalls. Mater Chem Phys 140(2–3):499–507

    Article  CAS  Google Scholar 

  64. Zschoerper NP, Katzenmaier V, Vohrer U, Haupt M, Oehr C, Hirth T (2009) Analytical investigation of the composition of plasma-induced functional groups on carbon nanotube sheets. Carbon 47(9):2174–2185

    Article  CAS  Google Scholar 

  65. Saito T, Matsushige K, Tanaka K (2002) Chemical treatment and modification of multi-walled carbon nanotubes. Physica B 323(1–4):280–283

    Article  CAS  Google Scholar 

  66. Dillon AC, Gennett T, Jones KM, Alleman JL, Parilla PA, Heben MJ (1999) A simple and complete purification of single-walled carbon nanotube materials. Adv Mater 11(16):1354–1358

    Article  CAS  Google Scholar 

  67. Morelos-Gómez A, Tristán López F, Cruz-Silva R, Vega DÃ-az SM, Terrones M (2013) Modified carbon nanotubes. In: Vajtai R (ed) Springer Handbook of Nanomaterials, pp 189–232. Springer, Berlin Heidelberg

    Google Scholar 

  68. Hirsch A, Vostrowsky O (2005) Functionalization of carbon nanotubes. Functional molecular nanostructures. Springer, Berlin, pp 193–237

    Book  Google Scholar 

  69. Trusova ME, Kutonova KV, Kurtukov VV, Filimonov VD, Postnikov PS (2016) Arenediazonium salts transformations in water media: coming round to origins. Resour Efficient Technol 2(1):36–42

    Article  Google Scholar 

  70. Mohamed AA, Salmi Z, Dahoumane SA, Mekki A, Carbonnier B, Chehimi MM (2015) Functionalization of nanomaterials with aryldiazonium salts. Adv Coll Interface Sci 225:16–36

    Article  CAS  Google Scholar 

  71. Backes C, Hirsch A (2010) Noncovalent functionalization of carbon nanotubes. Wiley, Chichester, UK, pp 1–48

    Google Scholar 

  72. Composites C. Functionalization of CNTs 2018 (cited 11 Mar 2018). Available from: https://sites.google.com/site/cntcomposites/functionalization-of-cnts

  73. Ferreira FV, Cividanes LDS, Brito FS, de Menezes BRC, Franceschi W, Simonetti EAN et al (2016) Functionalization of carbon nanotube and applications. Functionalizing Graphene and carbon nanotubes: A review. Springer, Cham, pp 31–61

    Book  Google Scholar 

  74. Bianco A, Sainz R, Li S, Dumortier H, Lacerda L, Kostarelos K et al (2008) Biomedical applications of functionalised carbon nanotubes. In: Cataldo F, Da Ros T (eds) Medicinal chemistry and pharmacological potential of fullerenes and carbon nanotubes. Springer, Dordrecht, Netherlands, pp 23–50

    Chapter  Google Scholar 

  75. Kasperski A, Weibel A, Estournès C, Laurent C, Peigney A (2014) Multi-walled carbon nanotube–Al2O3 composites: covalent or non-covalent functionalization for mechanical reinforcement. Scripta Mater 75:46–49

    Article  CAS  Google Scholar 

  76. Behnam B, Shier WT, Nia AH, Abnous K, Ramezani M (2013) Non-covalent functionalization of single-walled carbon nanotubes with modified polyethyleneimines for efficient gene delivery. Int J Pharm 454(1):204–215

    Article  CAS  Google Scholar 

  77. Sanz V, Borowiak E, Lukanov P, Galibert AM, Flahaut E, Coley HM et al (2011) Optimising DNA binding to carbon nanotubes by non-covalent methods. Carbon 49(5):1775–1781

    Article  CAS  Google Scholar 

  78. Jeon I-Y, Chang DW, Kumar NA, Baek J-B (2011) Functionalization of carbon nanotubes. Carbon nanotubes-Polymer nanocomposites: InTech

    Google Scholar 

  79. Eatemadi A, Daraee H, Karimkhanloo H, Kouhi M, Zarghami N, Akbarzadeh A et al (2014) Carbon nanotubes: properties, synthesis, purification, and medical applications. Nanoscale Res Lett 9(1):393

    Article  CAS  Google Scholar 

  80. Pal S (2014) Biomaterials and its characterization. Design of artificial human joints & organs. Springer US, Boston, MA, pp 51–73

    Book  Google Scholar 

  81. Tibbetts GG (2001) Vapor-grown carbon fiber research and applications: achievements and barriers. Carbon filaments and nanotubes: common origins, differing applications?. Springer, Berlin, pp 1–9

    Google Scholar 

  82. Ci L, Wei J, Wei B, Xu C, Liang J, Wu D (2000) Novel carbon filaments with carbon beads grown on their surface. J Mater Sci Lett 19(1):21–22

    Article  CAS  Google Scholar 

  83. Ren Z, Lan Y, Wang Y (2012) Aligned carbon nanotubes: physics, concepts, fabrication and devices. Springer Science & Business Media, Berlin

    Google Scholar 

  84. Ko FK, Kuznetsov V, Flahaut E, Peigney A, Laurent C, Prinz VY, et al (2004) Formation of nanofibers and nanotubes production. Nanoeng Nanofibrous Mater. 169:1–129. Springer, Berlin

    Google Scholar 

  85. Oberlin A, Endo M, Koyama T (1976) Filamentous growth of carbon through benzene decomposition. J Cryst Growth 32(3):335–349

    Article  CAS  Google Scholar 

  86. Demoncy N, Stephan O, Brun N, Colliex C, Loiseau A, Pascard H (1998) Filling carbon nanotubes with metals by the arc-discharge method: the key role of sulfur. Eur Phys J B-Condens Matter Complex Syst 4(2):147–157

    Article  CAS  Google Scholar 

  87. Fonseca A, Nagy J (2001) Carbon nanotubes formation in the arc discharge process: carbon filaments and nanotubes: common origins, differing applications? p 75–84. Springer, Berlin

    Google Scholar 

  88. Hu J, Bando Y, Xu F, Li Y, Zhan J, Xu J et al (2004) Growth and field-emission properties of crystalline, thin-walled carbon microtubes. Adv Mater 16(2):153–156

    Article  CAS  Google Scholar 

  89. Ren Z, Lan Y, Wang Y (2013) Carbon nanotubes: Aligned carbon nanotubes: physics, concepts, fabrication and devices. Springer, Berlin Heidelberg, pp 7–43

    Google Scholar 

  90. Iijima S, Ichihashi T (1993) Single-shell carbon nanotubes of 1-nm diameter. Nature 363(6430):603

    Article  CAS  Google Scholar 

  91. Joselevich E, Dai H, Liu J, Hata K, Windle AH (2008) Carbon nanotube synthesis and organization. Carbon nanotubes. Springer, Berlin, Heidelberg, pp 101–165

    Google Scholar 

  92. Lyskawa J, Grondein A, Bélanger D (2010) Chemical modifications of carbon powders with aminophenyl and cyanophenyl groups and a study of their reactivity. Carbon 48(4):1271–1278

    Article  CAS  Google Scholar 

  93. Leinonen H, Lajunen M (2012) Direct functionalization of pristine single-walled carbon nanotubes by diazonium-based method with various five-membered S-or N-heteroaromatic amines. J Nanopart Res 14(9):1064

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. M. Mubarak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Khan, F.S.A., Mubarak, N.M., Khalid, M., Abdullah, E.C. (2019). Functionalized Carbon Nanomaterial for Artificial Bone Replacement as Filler Material. In: Inamuddin, Thomas, S., Kumar Mishra, R., Asiri, A. (eds) Sustainable Polymer Composites and Nanocomposites. Springer, Cham. https://doi.org/10.1007/978-3-030-05399-4_27

Download citation

Publish with us

Policies and ethics