Skip to main content

Inferring Short-Term Volatility Indicators from the Bitcoin Blockchain

  • Conference paper
  • First Online:
Complex Networks and Their Applications VII (COMPLEX NETWORKS 2018)

Part of the book series: Studies in Computational Intelligence ((SCI,volume 813))

Included in the following conference series:

Abstract

In this paper, we study the possibility of inferring early warning indicators (EWIs) for periods of extreme bitcoin price volatility using features obtained from Bitcoin daily transaction graphs. We infer the low-dimensional representations of transaction graphs in the time period from 2012 to 2017 using Bitcoin blockchain, and demonstrate how these representations can be used to predict extreme price volatility events. Our EWI, which is obtained with a non-negative decomposition, contains more predictive information than those obtained with singular value decomposition or scalar value of the total Bitcoin transaction volume.

N. Antulov-Fantulin and D. Tolic—Shared first authorship.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nakamoto, S.: Bitcoin: A Peer-to-Peer Electronic Cash System (2008). http://bitcoin.org/bitcoin.pdf

  2. Kleineberg, K.-K., Helbing, D.: A social bitcoin could sustain a democratic digital world. Eur. Phys. J. Spec. Top. 225, 3231–3241 (2016)

    Article  Google Scholar 

  3. Dapp, M.M., Klauser, S., Ballandies, M.: Finance 4.0 Concept Technical Report (2018). https://doi.org/10.3929/ethz-b-000286469

  4. Watanagase, T., et al.: Session 3: financial inclusion and financial education. In: Financial System Stability, Regulation, and Financial Inclusion, pp. 69–94. Springer, Berlin (2015)

    Google Scholar 

  5. Acemoglu, D., Ozdaglar, A., Tahbaz-Salehi, A.: The network origins of large economic downturns. Technical Report, National Bureau of Economic Research (2013)

    Google Scholar 

  6. Huang, X., Vodenska, I., Havlin, S., Stanley, H.E.: Cascading failures in bi-partite graphs: model for systemic risk propagation. Sci. Rep. 3, 1219 (2013)

    Article  Google Scholar 

  7. Sakamoto, Y., Vodenska, I.: Systemic risk and structural changes in a bipartite bank network: a new perspective on the Japanese banking crisis of the 1990s. J. Complex Netw. 5, 315–333 (2017)

    Google Scholar 

  8. Glasserman, P., Young, H.P.: How likely is contagion in financial networks? J. Bank. Financ. 50, 383–399 (2015)

    Article  Google Scholar 

  9. Battiston, S., et al.: Complexity theory and financial regulation. Science 351, 818–819 (2016)

    Google Scholar 

  10. Piškorec, M., et al.: Cohesiveness in financial news and its relation to market volatility. Sci. Rep. 4, 5038 (2014)

    Google Scholar 

  11. Huang, X., Vodenska, I., Wang, F., Havlin, S., Stanley, H.E.: Identifying influential directors in the United States corporate governance network. Phys. Rev. E 84, 046101 (2011)

    Article  Google Scholar 

  12. Vodenska, I., Aoyama, H., Fujiwara, Y., Iyetomi, H., Arai, Y.: Interdependencies and causalities in coupled financial networks. PloS One 11, e0150994 (2016)

    Article  Google Scholar 

  13. Yermack, D.: Is bitcoin a real currency? an economic appraisal. Handbook of Digital Currency, pp. 31–43. Elsevier, Berlin (2015)

    Chapter  Google Scholar 

  14. Glaser, F., Zimmermann, K., Haferkorn, M., Weber, M.C., Siering, M.: Bitcoin - asset or currency? revealing users’ hidden intentions. ECIS 2014 (tel aviv). Available at SSRN: https://ssrn.com/abstract=2425247 (15 April 2014)

  15. Garcia, D., Tessone, C.J., Mavrodiev, P., Perony, N.: The digital traces of bubbles: feedback cycles between socio-economic signals in the bitcoin economy. J. R. Soc. Interface 11, 20140623 (2014)

    Google Scholar 

  16. Garcia, D., Schweitzer, F.: Social signals and algorithmic trading of bitcoin. R. Soc. Open Sci. 2, 150288 (2015)

    Article  MathSciNet  Google Scholar 

  17. Amjad, M., Shah, D.: Trading bitcoin and online time series prediction. In: NIPS 2016 Time Series Workshop, pp. 1–15 (2017)

    Google Scholar 

  18. Wheatley, S., Sornette, D., Huber, T., Reppen, M., Gantner, R.N.: Are bitcoin bubbles predictable? combining a generalized metcalfe’s law and the lppls model (2018). arXiv:1803.05663

  19. Guo, T., Bifet, A., Antulov-Fantulin, N.: Bitcoin volatility forecasting with a glimpse into buy and sell orders. In: 2018 IEEE International Conference on Data Mining (ICDM). Singapore (2018)

    Google Scholar 

  20. Kim, Y.B., et al.: Predicting fluctuations in cryptocurrency transactions based on user comments and replies. PLOS One 11, e0161197 (2016)

    Article  Google Scholar 

  21. Kondor, D., Csabai, I., Szule, J., Posfai, M., Vattay, G.: Inferring the interplay between network structure and market effects in bitcoin. New J. Phys. 16, 125003 (2014)

    Article  Google Scholar 

  22. Kondor, D., Posfai, M., Csabai, I., Vattay, G.: Do the rich get richer? an empirical analysis of the bitcoin transaction network. PLOS One 9, 1–10 (2014)

    Article  Google Scholar 

  23. ElBahrawy, A., Alessandretti, L., Kandler, A., Pastor-Satorras, R., Baronchelli, A.: Evolutionary dynamics of the cryptocurrency market. R. Soc. Open Sci. 4, 170623 (2017)

    Article  MathSciNet  Google Scholar 

  24. Bolt, W.: On the value of virtual currencies. SSRN Electron. J. (2016). Available at SSRN: https://ssrn.com/abstract=2842557

  25. Hayes, A.: Cryptocurrency value formation: an empirical analysis leading to a cost of production model for valuing bitcoin. SSRN Electron. J. (2015). Available at SSRN: https://ssrn.com/abstract=2648366

  26. Kristoufek, L.: What are the main drivers of the bitcoin price? evidence from wavelet coherence analysis. PLOS One 10, e0123923 (2015)

    Article  Google Scholar 

  27. Donier, J., Bouchaud, J.-P.: Why do markets crash? bitcoin data offers unprecedented insights. PLOS One 10, 1–11 (2015)

    Article  Google Scholar 

  28. Ron, D., Shamir, A.: Quantitative analysis of the full bitcoin transaction graph. In: Financial Cryptography and Data Security, pp. 6–24. Springer, Berlin, Heidelberg (2013)

    Google Scholar 

  29. Möser, M., Böhme, R.: The price of anonymity: empirical evidence from a market for bitcoin anonymization. J. Cybersecur. 3, 127–135 (2017)

    Article  Google Scholar 

  30. Garay, J., Kiayias, A., Leonardos, N.: The bitcoin backbone protocol: analysis and applications. In: Advances in Cryptology - EUROCRYPT 2015, pp. 281–310. Springer, Berlin, Heidelberg (2015)

    Google Scholar 

  31. Eyal, I., Sirer, E.G.: Majority is not enough. Commun. ACM 61, 95–102 (2018)

    Article  Google Scholar 

  32. Ciaian, P., Rajcaniova, M., Kancs, A.: The economics of bitcoin price formation (2014). arXiv:1405.4498

  33. Bouoiyour, J., Selmi, R.: The bitcoin price formation: beyond the fundamental sources (2017). arXiv:1707.01284

  34. Kong, D., Ding, C., Huang, H.: Robust nonnegative matrix factorization using l21-norm. In: Proceedings of the 20th ACM International Conference on Information and Knowledge Management, CIKM 2011, pp. 673–682. ACM, New York, NY, USA (2011)

    Google Scholar 

  35. Ding, C.H.Q., Zhou, D., He, X., Zha, H.: R1-pca: rotational invariant l1-norm principal component analysis for robust subspace factorization. In: Cohen, W.W., Moore, A. (eds.) ICML, Volume 148 of ACM International Conference Proceeding Series, pp. 281–288. ACM (2006)

    Google Scholar 

  36. Keshavan, R.H., Montanari, A., Oh, S.: Matrix completion from a few entries. IEEE Trans. Inf. Theor. 56, 2980–2998 (2010)

    Article  MathSciNet  Google Scholar 

  37. Meilijson, I.: The garman-klass volatility estimator revisited. Revstat Stat. J. 9(3), 199–212 (2011)

    MathSciNet  MATH  Google Scholar 

  38. Suykens, J., Vandewalle, J.: Least squares support vector machine classifiers. Neural Process. Lett. 9, 293–300 (1999)

    Article  Google Scholar 

  39. Davis, J., Goadrich, M.: The relationship between precision-recall and roc curves. In: Proceedings of the 23rd International Conference on Machine Learning, ICML 2006, pp. 233–240. ACM, New York, NY, USA (2006)

    Google Scholar 

  40. Hoyer, P.: Non-negative sparse coding. In: Proceedings of the 12th IEEE Workshop on Neural Networks for Signal Processing, pp. 557-565. IEEE (2002)

    Google Scholar 

Download references

Acknowledgement and Contribution

Thanks to students Grüner Maximilian, Weingart Nino, Riesenkampf Heiki for help in processing blockchain data. The work of N.A.F. has been funded by the EU Horizon 2020 SoBigData project under grant agreement No. 654024. All authors contributed to the writing and editing of the manuscript. N.A.F. performed computational modeling and experiments. D.T. performed computational modeling and design of research. M.P. and Z.C. were involved in data processing and analysis. I.V. was involved in financial analysis and interpretation of results.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nino Antulov-Fantulin .

Editor information

Editors and Affiliations

A Appendix

A Appendix

In order to solve the following non-convex optimization problem \( {\underset{\mathbf{H,W } \ge 0}{\text {min}}} ||\mathbf X -\mathbf WH ||_{2,1} + \lambda ||\mathbf H ||_{2,1}\) where \(||.||_{2,1}\) denotes the \(L_{2,1}\) matrix norm. First we randomly initialize the matrices \(\mathbf H,W \) then iteratively fix one of the matrices (W,H) and perform the update step on another matrix. The procedure is repeated until the convergence. We use the following updates [34]: \(\mathbf H _{k,i} = \mathbf H _{k,i} \frac{(\mathbf W ^T \mathbf X \mathbf D _1)_{k,i}}{ (\mathbf W ^T \mathbf W \mathbf H \mathbf D _1 + \lambda \mathbf H D _2)_{k,i}}\), \( \mathbf W _{j,k} = \mathbf W _{j,k} \frac{(\mathbf X D _1 \mathbf H ^T)_{j,k}}{ ( \mathbf W H D _1 \mathbf H ^T )_{j,k}}\), where \(\mathbf D _1, \mathbf D _2\) are diagonal matrices defined as: \((\mathbf D _{i,i})_1 = 1 / \sqrt{\sum _j (\mathbf X -\mathbf WH )^2_{j,i}}\) , \((\mathbf D _{i,i})_2 = 1 / \sqrt{\sum _j \mathbf H ^2_{j,i}}.\)

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Antulov-Fantulin, N., Tolic, D., Piskorec, M., Ce, Z., Vodenska, I. (2019). Inferring Short-Term Volatility Indicators from the Bitcoin Blockchain. In: Aiello, L., Cherifi, C., Cherifi, H., Lambiotte, R., Lió, P., Rocha, L. (eds) Complex Networks and Their Applications VII. COMPLEX NETWORKS 2018. Studies in Computational Intelligence, vol 813. Springer, Cham. https://doi.org/10.1007/978-3-030-05414-4_41

Download citation

Publish with us

Policies and ethics