Skip to main content

Similarity of GPS Trajectories Using Dynamic Time Warping: An Application to Cruise Tourism

  • Conference paper
  • First Online:
Theoretical and Applied Statistics (SIS 2015)

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 274))

Included in the following conference series:

Abstract

The aim of this research is to propose an analysis of the trajectories of cruise passengers at their destination using Dynamic Time Warping algorithm. Data collected by means of GPS devices relating to the behavior of cruise passengers in the port of Palermo have been analyzed in order to show similarities and differences among their spatial trajectories at destination. A cluster analysis has been performed in order to identify segments of cruise passengers, based on the similarity of their trajectories. The results have been compared in terms of several metrics derived from GPS tracking data in order to validate the proposed approach. Our findings are of interest from a methodological perspective concerning the analysis of GPS data and the management of cruise tourism destinations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aach, J., Church, G.M.: Aligning gene expression time series with time warping algorithms. Bioinformatics 17(6), 495–508 (2001)

    Article  Google Scholar 

  2. Andrienko, G., Andrienko, N., Rinzivillo, S., Nanni, M., Pedreschi, D., Giannotti, F.: Interactive visual clustering of large collections of trajectories. In: IEEE Symposium on Visual Analytics Science and Technology, 2009. VAST 2009. IEEE (2009)

    Google Scholar 

  3. Andriotis, K., Agiomirgianakis, G.: Cruise visitors experience in a Mediterranean port of call. Int. J. Tour. Res. 12(4), 390–404 (2010)

    Article  Google Scholar 

  4. Bauder, M.: Using GPS supported speed analysis to determine spatial visitor behaviour. Int. J. Tour. Res. 17(4), 337–346 (2015)

    Article  Google Scholar 

  5. Berndt, D.J., Clifford, J.: Using dynamic time warping to find patterns in time series. KDD Work. 10(16), 359–370 (1994)

    Google Scholar 

  6. Bonanno, G., Lillo, F., Mantegna, R.N.: Levels of complexity in financial markets. Phys. A Stat. Mech. Appl. 299(1), 16–27 (2001)

    Article  MATH  Google Scholar 

  7. Brida, J.G., Fasone, V., Scuderi, R., Zapata-Aguirre, S.: Exploring the determinants of cruise passengers expenditure at ports of call in Uruguay. Tour. Econ. 20(5), 1133–1143 (2014)

    Article  Google Scholar 

  8. Cessford, G.R., Dingwall, P.R.: Tourism on New Zealands Sub-antarctic islands. Ann. Tour. Res. 21(2), 318–332 (1994)

    Article  Google Scholar 

  9. De Cantis, S., Ferrante, M., Kahani, A., Shoval, N.: Cruise passengers’ behavior at the destination: investigation using GPS technology. Tour. Manag. 52, 133–150 (2016)

    Article  Google Scholar 

  10. Defays, D.: An efficient algorithm for a complete link method. Comput. J. 20(4), 364–366 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  11. Edwards, D., Griffin, T., Hayllar, B., Dickson, T.: Making Tracks and Collecting Images: New Methods for Examining Tourists’ Spatial Behaviour in Cities. In: Council for Australian University Tourism and Hospitality Education (Hrsg.), CAUTHE 2009, See Change: Tourism & Hospitality in a Dynamic World. Perth, pp. 2023–2026 (2009)

    Google Scholar 

  12. Eisen, M.B., Spellman, P.T., Brown, P.O., Botstein, D.: Cluster analysis and display of genome-wide expression patterns. Proc. Natl. Acad. Sci. 95(25), 14863–14868 (1998)

    Article  Google Scholar 

  13. Ferrante, M., De Cantis, S., Shoval, N.: A general framework for collecting and analyzing the tracking data of cruise passengers at the destination. Curr. Issues Tour. 1–26 (2016)

    Google Scholar 

  14. Giorgino, T.: DTW: Dynamic Time Warping algorithms. R package version 1.17.1 (2013)

    Google Scholar 

  15. Gong, H., Chen, C., Bialostozky, E., Lawson, C.T.: A GPS/GIS method for travel mode detection in New York City. Spec. Issue: Geoinformatics 2010 36(2), 131–139 (2012)

    Google Scholar 

  16. Gower, J.C., Ross, G.J.S.: Minimum spanning trees and single linkage cluster analysis. J. R. Stat. Soc. Ser. C 18(1), 54–64 (1969)

    MathSciNet  Google Scholar 

  17. Guyer, C., Pollard, J.: Cruise visitor impressions of the environment of the Shannon-Erne waterways system. J. Environ. Manag. 51(2), 199–215 (1997)

    Article  Google Scholar 

  18. Hallo, J.C., Manning, R.E., Valliere, W., Budruk, M.: A case study comparison of visitor self-reported and GPS recorded travel routes. In: Proceedings of the 2004 Northeastern Recreation Research Symposium, GTR-NE-326, Newton Square, PA: Forest Service, pp. 172–177 (2004)

    Google Scholar 

  19. Jaakson, R.: Beyond the tourist bubble? cruiseship passengers in port. Ann. Tour. Res. 31(1), 44–60 (2004)

    Article  Google Scholar 

  20. Johnson, D., Trivedi, M.M.: Driving style recognition using a smartphone as a sensor platform. In: Proceedings of the 14th International IEEE Conference on Intelligent Transportation Systems (ITSC), pp. 1609–1615 (2011)

    Google Scholar 

  21. Johnson, S.C.: Hierarchical clustering schemes. Psychometrika 2, 241–254 (1967)

    Article  MATH  Google Scholar 

  22. Kovács-Vajna, Z.M.: A fingerprint verification system based on triangular matching and dynamic time warping. IEEE Trans. Pattern Anal. Mach. Intell. 22(11), 1266–1276 (2000)

    Article  Google Scholar 

  23. McKercher, B., Zoltan, J.: Tourists flows and spatial behavior. In: Lew, A.A., Hall, M.C., Williams, A.M. (eds.) The Wiley Blackwell Companion to Tourism, pp. 33–44. Wiley, Malden (2014)

    Chapter  Google Scholar 

  24. Mori, A., Uchida, S., Kurazume, R., Taniguchi, R., Hasegawa, T., Sakoe, H.: Early recognition and prediction of gestures. In: Proceeding of the 18th International Conference on Pattern Recognition 2006, vol. 3, pp. 560–563 (2006)

    Google Scholar 

  25. Munich, M.E., Perona, P.: Continuous dynamic time warping for translation-invariant curve alignment with applications to signature verification. In: The Proceedings of the Seventh IEEE International Conference on Computer Vision, 1999. IEEE vol. 1, pp. 108–115 (1999)

    Google Scholar 

  26. Myers, C., Rabiner, L.R., Rosenberg, A.E.: Performance tradeoffs in dynamic time warping algorithms for isolated word recognition. IEEE Trans. Acoust. Speech Signal Process. 28(6), 623–635 (1980)

    Article  MATH  Google Scholar 

  27. Puczkó, L., Bárd, E., Füzi, J.: Methodological triangulation: the study of visitor behaviour at the Hungarian open air museum. In: Richards, G., Munsters, W. (eds.) Cultural Tourism Research Methods, pp. 61–74. CABI, Wallingford (2010)

    Chapter  Google Scholar 

  28. Rabiner, L.R., Juang, B.-H.: Fundamentals of Speech Recognition. Tsinghua University Press, Beijing (1999)

    Google Scholar 

  29. Rhee, I., Shin, M., Hong, S., Lee, K., Kim, S.J., Chong, S.: On the levy-walk nature of human mobility. IEEE/ACM Trans. Netw. (TON) 19(3), 630–643 (2011)

    Article  Google Scholar 

  30. Sakoe, H., Chiba, S.: Dynamic programming algorithm optimization for spoken word recognition. IEEE Trans. Acoust. Speech Signal Process. 26(1), 43–49 (1978)

    Article  MATH  Google Scholar 

  31. Shoval, N.: Tracking technologies and urban analysis. Cities 25(1), 21–28 (2008)

    Article  Google Scholar 

  32. Shoval, N., Isaacson, M.: Tracking tourists in the digital age. Ann. Tour. Res. 34(1), 141–159 (2007)

    Article  Google Scholar 

  33. Sokal, R., Michener, C.: A statistical method for evaluating systematic relationships. Univ. Kans. Sci. Bull. 38, 1409–1438 (1958)

    Google Scholar 

  34. Tsui, S.Y.A., Shalaby, A.: An enhanced system for link and mode identification for GPS-based personal travel survey. Transp. Res. Rec. 1972, 38–45 (2006)

    Article  Google Scholar 

  35. Vlachos, M., Kollios, G., Gunopulos, D.: Discovering similar multidimensional trajectories. In: Proceedings of the 18th International Conference on Data Engineering. IEEE, pp. 673–684 (2002)

    Google Scholar 

  36. Wang, H., Su, H., Zheng, K., Sadiq, S., Zhou, X.: An effectiveness study on trajectory similarity measures. In: Proceedings of the Twenty-Fourth Australasian Database Conference, vol. 137, pp. 13–22 (2013)

    Google Scholar 

  37. Xu, R., Wunsch, D.: Survey of clustering algorithms. IEEE Trans. Neural Netw. 16(3), 645–678 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mauro Ferrante .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ferrante, M., Bongiorno, C., Shoval, N. (2019). Similarity of GPS Trajectories Using Dynamic Time Warping: An Application to Cruise Tourism. In: Crocetta, C. (eds) Theoretical and Applied Statistics. SIS 2015. Springer Proceedings in Mathematics & Statistics, vol 274. Springer, Cham. https://doi.org/10.1007/978-3-030-05420-5_10

Download citation

Publish with us

Policies and ethics