Skip to main content

Microwave and Millimetre Wave Antipodal Vivaldi Antenna with Periodic Slit-Edge Technique and the Trapezoid-Shaped Dielectric Lens for Imaging of Concrete-Based Composite Materials

  • Chapter
  • First Online:
Antipodal Vivaldi Antennas for Microwave Imaging of Construction Materials and Structures
  • 455 Accesses

Abstract

A compact antipodal Vivaldi antenna (AVA) with high gain at low frequencies and front-to-back ratio, lower operating frequency (3.4 GHz) and wide operating bandwidth from 3.4 to 40 GHz is presented in this chapter. It includes periodic slit-edge technique and trapezoid-shaped dielectric lens as an extension of substrate. Applicability of the proposed AVA for UWB imaging of construction materials and structures for non-destructive testing and evaluation is demonstrated using three different samples including a concrete block with plasterboard sheets to highlight the high-range resolution of the proposed antenna. In the first sample, capability of the proposed antenna for the detection and evaluation of targets such as metal discs placed at different heights on foam substrate is demonstrated. In the second sample, a practical sample that is based on cubic concrete block was prepared and imaged. A groove was made on the top surface of the block and one steel rod was inserted in the groove. In the third sample, top of the cubic concrete block was covered by plasterboard sheets and an air gap was created by removing one sheet. Third sample had a cavity in a composite structure and imaging results are provided.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bai, J., Shi, S., & Prather, D. W. (2011). Modified compact antipodal Vivaldi antenna for 4–50-GHz UWB application. IEEE Transactions on Microwave Theory and Techniques, 59, 1051–1057.

    Article  Google Scholar 

  • Bourqui, J., Okoniewski, M., & Fear, E. C. (2010). Balanced antipodal Vivaldi antenna with dielectric director for near-field microwave imaging. IEEE Transactions on Antennas and Propagation, 58, 2318–2326.

    Article  Google Scholar 

  • Case, J. T., Ghasr, M. T., & Zoughi, R. (2011). Optimum two-dimensional uniform spatial sampling for microwave SAR-based NDE imaging systems. IEEE Transactions on Instrumentation and Measurement, 60, 3806–3815.

    Article  Google Scholar 

  • Chuang, J.-K., Cheng, Y.-H., & Wang, C.-L. (2016). Compact and broadband microstrip-fed antenna using antisymmetric tapered probe with triangular element. In 2016 IEEE International Symposium on RadioFrequency Integration Technology (RFIT). IEEE, pp. 1–3.

    Google Scholar 

  • De Oliveira, A. M., Perotoni, M. B., Kofuji, S. T., & Justo, J. F. (2015). A palm tree antipodal Vivaldi antenna with exponential slot edge for improved radiation pattern. IEEE Antennas and Wireless Propagation Letters, 14, 1334–1337.

    Article  Google Scholar 

  • Fei, P., Jiao, Y.-C., Hu, W., & Zhang, F.-S. (2011). A miniaturized antipodal Vivaldi antenna with improved radiation characteristics. IEEE Antennas and Wireless Propagation Letters, 10, 127–130.

    Article  Google Scholar 

  • In, D. M., Lee, M. J., Kim, D., Oh, C. Y., & Kim, Y. S. (2012). Antipodal linearly tapered slot antenna using unequal half-circular defected sides for gain improvements. Microwave and Optical Technology Letters, 54, 1963–1965.

    Article  Google Scholar 

  • Juan, L., Guang, F., Lin, Y., & Demin, F. (2013). A modified balanced antipodal Vivaldi antenna with improved radiation characteristics. Microwave and Optical Technology Letters, 55, 1321–1325.

    Article  Google Scholar 

  • Kota, K., & Shafai, L. (2011). Gain and radiation pattern enhancement of balanced antipodal Vivaldi antenna. Electronics Letters, 47, 1.

    Article  Google Scholar 

  • Molaei, A., Kaboli, M., Mirtaheri, S. A., & Abrishamian, M. S. (2014). Dielectric lens balanced antipodal Vivaldi antenna with low cross-polarisation for ultra-wideband applications. IET Microwaves, Antennas and Propagation, 8, 1137–1142.

    Article  Google Scholar 

  • Moosazadeh, M., & Kharkovsky, S. (2016). A compact high-gain and front-to-back ratio elliptically tapered antipodal Vivaldi antenna with trapezoid-shaped dielectric lens. IEEE Antennas and Wireless Propagation Letters, 15, 552–555.

    Article  Google Scholar 

  • Moosazadeh, M., Kharkovsky, S., & Case, J. T. (2016). Microwave and millimetre wave antipodal Vivaldi antenna with trapezoid-shaped dielectric lens for imaging of construction materials. IET Microwaves, Antennas and Propagation, 10, 301–309.

    Article  Google Scholar 

  • Pandey, G., Verma, H., & Meshram, M. (2015). Compact antipodal Vivaldi antenna for UWB applications. Electronics Letters, 51, 308–310.

    Article  Google Scholar 

  • Puskely, J., Lacik, J., Raida, Z., & Arthaber, H. (2016). High gain dielectric loaded Vivaldi antenna for Ka band applications. IEEE Antennas and Wireless Propagation Letters, 15, 2004–2007.

    Article  Google Scholar 

  • Schaubert, D. H., Kollberg, E. L., Korzeniowski, T. L., Thungren, T., Johansson, J., & Yngvesson, K. S. (1985). Endfire tapered slot antennas on dielectric substrates. IEEE Transactions on Antennas and Propagation, 33, 1392–1400.

    Article  Google Scholar 

  • Teni, G., Zhang, N., Qiu, J., & Zhang, P. (2013). Research on a novel miniaturized antipodal Vivaldi antenna with improved radiation. IEEE Antennas and Wireless Propagation Letters, 12, 417–420.

    Article  Google Scholar 

  • Wang, P., Zhang, H., Wen, G., & Sun, Y. (2012). Design of modified 6-18 GHz balanced antipodal Vivaldi antenna. Progress in Electromagnetics Research C, 25, 271–285.

    Article  Google Scholar 

  • Wu, J., Zhao, Z., Nie, Z., & Liu, Q.-H. (2014). A printed UWB Vivaldi antenna using stepped connection structure between slot-line and tapered patches. IEEE Antennas and Wireless Propagation Letters, 13, 698–701.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Moosazadeh, M. (2019). Microwave and Millimetre Wave Antipodal Vivaldi Antenna with Periodic Slit-Edge Technique and the Trapezoid-Shaped Dielectric Lens for Imaging of Concrete-Based Composite Materials. In: Antipodal Vivaldi Antennas for Microwave Imaging of Construction Materials and Structures. Springer, Cham. https://doi.org/10.1007/978-3-030-05566-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-05566-0_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-05565-3

  • Online ISBN: 978-3-030-05566-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics