Skip to main content

Progress in Research on Nanomaterial-Plant Interaction

  • Chapter
  • First Online:
Nanomaterials and Plant Potential
  • 1144 Accesses

Abstract

Nanomaterials (NMs) have received global attention because of their unique physicochemical properties. Recent advances in nanotechnologies have proved useful in improving plant growth and yield, quality of food materials, and efficacy of phytomedicine. Nanoparticles (NPs) of several metals and metal oxides are now being synthesized by using plant extracts or their products as the reducing and capping agents. Many NPs are used as nutrient carriers for plants and have shown positive impact on the overall plant performance. However, their reported toxicity in biological/physiological environment is a point of concern. This chapter provides an overview of the current and the expected future status of NM-plant interaction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmad H, Rajagopal K, Shah AH, Bhat AH, Venugopal K (2017) Study of bio-fabrication of iron nanoparticles and their fungicidal property against phytopathogens of apple orchards. IET Nanobiotechnol 11:230–235

    PubMed  Google Scholar 

  • Aschberger K, Gottardo S, Amenta V, Arena M, Botelho MF, Bouwmeester H, Brandhoff P, Mech A, Quiros PL, Rauscher H, Schoonjans R, Vittoria VM, Peters R (2015) Nanomaterials in food current and future applications and regulatory aspects. J Phys Conf Ser 617:12–32, conference 1.

    Article  Google Scholar 

  • Balashanmugam P, Balakumaran MD, Murugan R, Dhanapal K, Kalaichelvan PT (2016) Phytogenic synthesis of silver nanoparticles, optimization and evaluation of in vitro antifungal activity against human and plant pathogens. Microbiol Res 192:52–64

    Article  CAS  Google Scholar 

  • Banterle A, Cavaliere A, Carraresi L, Stranieri S (2014) Food SMEs face increasing competition in the EU market: marketing management capability is a tool for becoming a price maker. Agribusiness 30:113–131

    Article  Google Scholar 

  • Chen R, Zhang C, Zhao Y, Huang Y, Liu Z (2018) Foliar application with nano-silicon reduced cadmium accumulation in grains by inhibiting cadmium translocation in rice plants. Environ Sci Pollut Res Int 25:2361–2368

    Article  CAS  Google Scholar 

  • Cox A, Venkatachalam P, Sahi S, Sharma N (2016) Silver and titanium dioxide nanoparticle toxicity in plants: a review of current research. Plant Physiol Biochem 107:147–163

    Article  CAS  Google Scholar 

  • Du W, Tan W, Peralta VJR, Gardea TJL, Ji R, Yin Y, Guo H (2017) Interaction of metal oxide nanoparticles with higher terrestrial plants: physiological and biochemical aspects. Plant Physiol Biochem 110:210–225

    Article  CAS  Google Scholar 

  • European Food Safety Authority (2009) Updating the opinion related to the revision of Annexes II and III to Council Directive 91/414/EEC concerning the placing of plant protection products on the market-Toxicological and metabolism studies. EFSA J 1166:1–6

    Google Scholar 

  • Fraceto LF, Grillo R, de Medeiros GA, Scognamiglio V, Rea G, Bartolucci C (2016) Nanotechnology in agriculture: which innovation potential does it have? Front Environ Sci 4:20

    Article  Google Scholar 

  • Gewin W (2015) Everything you need to know about nanopesticides. Modern Farmer Article. http://modernfarmer.com/2015/01/everything-need-know-nanopesticides/ [Accessed, 2015]

  • Hirsh S, Schiefer J, Gschwandtner A, Hartmann M (2014) The determinants of firm profitability differences in EU food processing. J Agric Econ 65:703–721

    Article  Google Scholar 

  • Hooley G, Piercy NF, Nicoulaud B (2012) Marketing strategy and competitive positioning. Prentice Hall/Financial Times, London

    Google Scholar 

  • Husen A (2017) Gold nanoparticles from plant system: synthesis, characterization and their application. In: Ghorbanpour M, Manika K, Varma A (eds) Nanoscience and plant–soil systems, vol 48. Springer, Cham, pp 455–479

    Google Scholar 

  • Husen A, Siddiqi KS (2014a) Carbon and fullerene nanomaterials in plant system. J Nanobiotechnol 12:16

    Article  Google Scholar 

  • Husen A, Siddiqi KS (2014b) Phytosynthesis of nanoparticles: concept, controversy and application. Nano Res Lett 9:229

    Article  Google Scholar 

  • Husen A, Siddiqi KS (2014c) Plants and microbes assisted selenium nanoparticles: characterization and application. J Nanobiotechnol 12:28

    Article  Google Scholar 

  • Jin X, Liu Y, Tan J, Owens G, Chen Z (2017) Removal of Cr (VI) from aqueous solutions via reduction and absorption by green synthesized iron nanoparticles. J Clean Prod 176:929–936

    Article  Google Scholar 

  • JRC scientific and policy reports (2014). Proceedings of a workshop on Nanotechnology for the agricultural sector: from research to the field. European Commission Joint Research Centre, Institute for Prospective Technological Studies. ISBN 978-92-79-37917-8, http://doi.org/10.2791/80497

  • Kah M (2015) Nanopesticides and nanofertilizers: emerging contaminants or opportunities for risk mitigation? Front Chem 3:64

    Article  Google Scholar 

  • Karny A, Zinger A, Kajal A, Shainsky-Roitman J, Schroeder A (2018) Therapeutic nanoparticles penetrate leaves and deliver nutrients to agricultural crops. Sci Rep 8:7589

    Article  Google Scholar 

  • Kole C, Kole P, Randunu KM, Choudhary P, Podila R, Ke PC, Rao AM, Marcus RK (2013) Nanobiotechnology can boost crop production and quality: first evidence from increased plant biomass, fruit yield and phytomedicine content in bitter melon (Momordica charantia). BMC Biotechnol 13:37

    Article  Google Scholar 

  • Kumar S, Chauhan N, Gopal M, Kumar R, Dilbaghi N (2015) Development and evaluation of alginate-chitosan nanocapsules for controlled release of acetamiprid. Int J Biol Macromol 81:631–637

    Article  CAS  Google Scholar 

  • Kumari M, Pandey S, Bhattacharya A, Mishra A, Nautiyal CS (2017a) Protective role of biosynthesized silver nanoparticles against early blight disease in Solanum lycopersicum. Plant Physiol Biochem 121:216–225

    Article  CAS  Google Scholar 

  • Kumari M, Pandey S, Mishra SK, Nautiyal CS, Mishra A (2017b) Effect of biosynthesized silver nanoparticles on native soil microflora via plant transport during plant pathogen nanoparticles interaction. 3 Biotech 7:345

    Article  Google Scholar 

  • Liu R, Lal R (2015) Potentials of engineered nanoparticles as fertilizers for increasing agronomic productions. Sci Total Environ 514:131–139

    Article  CAS  Google Scholar 

  • Mahakham W, Theerakulpisut P, Maensiri S, Phumying S, Sarmah AK (2016) Environmentally benign synthesis of phytochemicals-capped gold nanoparticles as nanopriming agent for promoting maize seed germination. Sci Total Environ 573:1089–1102

    Article  CAS  Google Scholar 

  • Mattiello A, Filippi A, Poscic F, Musetti R, Salvatici MC, Giordano C, Vischi M, Bertolini A, Marchiol L (2015) Evidence of phytotoxicity and genotoxicity in Hordeum vulgare L. exposed to CeO2 and TiO2 nanoparticles. Front Plant Sci 6:1043

    Article  Google Scholar 

  • Milani N, Hettiarachchi GM, Kirby JK, Beak DG, Stacey SP, McLaughlin MJ (2015) Fate of zinc oxide nanoparticles coated onto macronutrient fertilizers in an alkaline calcareous soil. PLoS One 10:e0126275

    Article  Google Scholar 

  • Nanotechnology Research Review (2014) https://www.bccresearch.com/market-research/nanotechnology/2014-nanotechnology-research-review-report-nan047f.html

  • Navarro E, Wagner B, Odzak N, Sigg L, Behra R (2015) Effects of differently coated silver nanoparticles on the photosynthesis of Chlamydomonas reinhardtii. Environ Sci Technol 49:8041–8047

    Article  CAS  Google Scholar 

  • Ogunkunle CO, Jimoh MA, Asogwa NT, Viswanathan K, Vishwakarma V, Fatoba PO (2018) Effects of manufactured nano-copper on copper uptake, bioaccumulation and enzyme activities in cowpea grown on soil substrate. Ecotoxicol Environ Saf 155:86–93

    Article  CAS  Google Scholar 

  • Parisi C, Vigani M, Rodríguez-Cerezo E (2014) Proceedings of a workshop on “Nanotechnology for the agricultural sector: from research to the field”. JRC Sci Policy Rep 1:40

    Google Scholar 

  • Ponmurugan P (2017) Biosynthesis of silver and gold nanoparticles using Trichoderma atroviride for the biological control of Phomopsis canker disease in tea plants. IET Nanobiotechnol 11:261–267

    Article  Google Scholar 

  • Prasad A, Astete CE, Bodoki AE, Windham M, Bodoki E, Sabliov CM (2018) Zein nanoparticles uptake and translocation in hydroponically grown sugar cane plants. J Agric Food Chem 66:6544–6551

    Google Scholar 

  • Raliya R, Biswas P, Tarafdar JC (2015) TiO2 nanoparticle biosynthesis and its physiological effect on mung bean (Vigna radiata L.). Biotechnol Rep 5:22–26

    Article  Google Scholar 

  • Raliya R, Tarafdar JC, Singh SK, Gautam R, Choudhary K, Maurino Veronica G, Saharan V (2014) MgO nanoparticles biosynthesis and its effect on chlorophyll contents in the leaves of Cluster bean (Cyamopsis tetragonoloba L.). Adv Sci Eng Med 6:538–545

    Google Scholar 

  • Sagadevan S, Periasamy M (2014) Recent trends in nanobiosensors and their applications – a review. Rev Adv Mater Sci 36:62–69

    CAS  Google Scholar 

  • Sangami S, Manu B (2017) Synthesis of green iron nanoparticles using laterite and their application as a fenton-like catalyst for the degradation of herbicide ametryn in water. Environ Technol Innov 8:150–163

    Article  Google Scholar 

  • Sathiyabama M, Charles RE (2015) Fungal cell wall polymer based nanoparticles in protection of tomato plants from wilt disease caused by Fusarium oxysporum f. sp. lycopersici. Carbohydr Polym 133:400–407

    Article  CAS  Google Scholar 

  • Savary S, Ficke A, Aubertot JN, Hollier C (2012) Crop losses due to diseases and their implications for global food production losses and food security. Food Sec 4:519–537

    Article  Google Scholar 

  • Sebastian A, Nangia A, Prasad MNV (2018) A green synthetic route to phenolics fabricated magnetite nanoparticles from coconut husk extract: Implications to treat metal contaminated water and heavy metal stress in Oryza sativa L. J Clean Prod 174:355–366

    Article  CAS  Google Scholar 

  • Sekhon BS (2014) Nanotechnology in agri-food production: an overview. Nanotechnol Sci Appl 7:31–53

    Article  Google Scholar 

  • Sertova NM (2015) Application of nanotechnology in detection of mycotoxins and in agricultural sector. J Cent Eur Agric 16:117–130

    Article  Google Scholar 

  • Sheykhbaglou R, Sedghi M, Fathi-Achachlouie B (2018) The effect of ferrous nano-oxide particles on physiological traits and nutritional compounds of soybean (Glycine max L.) seed. An Acad Bras Cienc 90:485–494

    Article  Google Scholar 

  • Siddiqi KS, Husen A (2016a) Engineered gold nanoparticles and plant adaptation potential. Nano Res Lett 11:400

    Article  Google Scholar 

  • Siddiqi KS, Husen A (2016b) Green synthesis, characterization and uses of palladium/platinum nanoparticles. Nano Res Lett 11:482

    Article  Google Scholar 

  • Siddiqi KS, Husen A (2017a) Recent advances in plant-mediated engineered gold nanoparticles and their application in biological system. J Trace Elem Med Biol 40:10–23

    Article  CAS  Google Scholar 

  • Siddiqi KS, Husen A (2017b) Plant response to engineered metal oxide nanoparticles. Nano Res Lett 12:92

    Article  Google Scholar 

  • Siddiqi KS, Rahman A, Tajuddin, Husen A (2016) Biogenic fabrication of iron/iron oxide nanoparticles and their application. Nano Res Lett 11:498

    Article  Google Scholar 

  • Siddiqi KS, Husen A, Rao RAK (2018) A review on biosynthesis of silver nanoparticles and their biocidal properties. J Nanobiotechnol 16:14

    Article  Google Scholar 

  • Singh A, Singh NB, Hussain I, Singh H (2017) Effect of biologically synthesized copper oxide nanoparticles on metabolism and antioxidant activity to the crop plants Solanum lycopersicum and Brassica oleracea var. botrytis. J Biotechnol 262:11–27

    Article  CAS  Google Scholar 

  • Sodano V, Verneau F (2014) Competition policy and food sector in the European Union. J Int Food Agribusiness Mark 26:155–172

    Article  Google Scholar 

  • Spengler A, Wanninger L, Pflugmacher S (2017) Oxidative stress mediated toxicity of TiO2 nanoparticles after a concentration and time dependent exposure of the aquatic macrophyte Hydrilla verticillata. AqToxico 190:32–39

    CAS  Google Scholar 

  • Syngenta (2018) Karate with Zeon Technology insecticide. http://www.syngenta-us.com/insecticides/karate-with-zeon-technology

    Google Scholar 

  • Tareq FK, Fayzunnesa M, Kabir MS (2017) Antimicrobial activity of plant-median synthesized silver nanoparticles against food and agricultural pathogens. Microb Pathog 109:228–232

    Article  CAS  Google Scholar 

  • Tiwari M, Sharma NC, Fleischmann P, Burbage J, Venkatachalam P, Sahi SV (2017) Nano titania exposure causes alterations in physiological, nutritional and stress responses in tomato (Solanum lycopersicum). Front Plant Sci 8:633

    Article  Google Scholar 

  • USDA (2015) U.S. Department of agriculture awards $3.8 million in grants for nanotechnology research. Available online at: http://nifa.usda.gov/press-release/usda-awards-38-million-grants-nanotechnology-research

  • Wang T, Lin J, Chen Z, Megharaj M, Naidu R (2014) Green synthesized iron nanoparticles by green tea and eucalyptus leaves extracts used for removal of nitrate in aqueous solution. J Clean Prod 83:413–419

    Article  CAS  Google Scholar 

  • Wang X, Yang X, Chen S, Li Q, Wang W, Hou C, Gao X, Wang L, Wang S (2016) Zinc oxide nanoparticles affect biomass accumulation and photosynthesis in Arabidopsis. Front Plant Sci 6:1243

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ali, M.B. (2019). Progress in Research on Nanomaterial-Plant Interaction. In: Husen, A., Iqbal, M. (eds) Nanomaterials and Plant Potential. Springer, Cham. https://doi.org/10.1007/978-3-030-05569-1_23

Download citation

Publish with us

Policies and ethics