Skip to main content

Energy Loss of Swift Heavy Ions: Fundamentals and Theoretical Formulations

  • Chapter
  • First Online:
Radiation Effects in Polymeric Materials

Abstract

The main interest of this chapter is to understand the fundamental energy loss processes through which incident energetic heavy ions lose their energies in the stopping medium. Fundamentals of ion interaction with matter are discussed where various modes of energy loss processes are explained. In the context of non-relativistic heavy ions, the contribution due to two types of energy loss modes, i.e., nuclear energy loss and electronic energy loss, is discussed in detail. Comparison between nuclear energy loss and electronic energy loss as a function of ion’s energy for Cu ion in Si target is shown. The fundamental Bohr energy loss equation is derived and extended by incorporating various correction terms. The most commonly used semi-empirical/empirical type energy loss formulations (Lindhard et al., Northcliffe and Schilling, Ziegler et al., Paul and Schinner, Huber et al., and Diwan et al.) are briefly introduced. Bragg’s rule, which determine the energy loss in polymers/compounds, is discussed. Finally, the importance of energy loss is highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ahlen SP (1980) Rev Mod Phys 52(1):121

    Article  CAS  Google Scholar 

  2. Chu WK, Mayer JW, Nicolet MA (1978) Backscattering Spectrometry. Academic Press, New York

    Book  Google Scholar 

  3. Sigmund P (1998) Nucl Instr and Meth Phys Res B135:1

    Article  Google Scholar 

  4. Sigmund P (2006) Particle penetration and radiation effects, general aspects and stopping of swift point charges, vol 1. Springer, Berlin, Heidelberg, New York

    Book  Google Scholar 

  5. Sigmund P (2014) Penetration of atomic and molecular ions, vol 2. Springer, Switzerland

    Google Scholar 

  6. Thomson JJ (1912) Phil Mag 23:449

    Article  CAS  Google Scholar 

  7. Rutherford E (1911) Philos Mag 21:699

    Article  Google Scholar 

  8. Bohr N (1913) Philos Mag 25:10

    Article  CAS  Google Scholar 

  9. Bohr N (1915) Philos Mag 30:581

    Article  CAS  Google Scholar 

  10. Bohr N (1948) Kgl Danske Videnskab Selskab Mat-Fys Medd 18:8

    Google Scholar 

  11. Bethe H (1930) Ann Physik 5:325

    Article  CAS  Google Scholar 

  12. Bethe H (1932) Z Phys 76:293

    Article  CAS  Google Scholar 

  13. Moller C (1932) Ann Phys 14:531

    Article  CAS  Google Scholar 

  14. Moller C (1972) Theory of relativity. Oxford University Press, Oxford

    Google Scholar 

  15. Mott NF (1931) Proc Cambridge Philos Soc 27:255

    Article  CAS  Google Scholar 

  16. Bloch F (1933) Z Physik 81:363

    Article  CAS  Google Scholar 

  17. Landau L (1944) J Phys USSR 8:201

    CAS  Google Scholar 

  18. Firsov OB (1957) Sov Phy JETP 5:1192

    CAS  Google Scholar 

  19. Firsov OB (1958) Sov Phy JETP 6:534

    Google Scholar 

  20. Sigmund P, Schinner A (2000) Eur Phys J D12:425

    Google Scholar 

  21. Sigmund P, Schinner A (2002) Nucl Instr and Meth Phys Res B195:64

    Article  Google Scholar 

  22. Bragg WH, Kleeman R (1905) Philos Mag 10:318

    Article  CAS  Google Scholar 

  23. Bethe HA (1933) Handbuch der Physik, 24/1, 2nd edn. In: Geiger H, Scheel K, p. 273. Springer, Berlin

    Google Scholar 

  24. Brandt W, Kitagawa M (1982) Phys Rev B 25:5631

    Article  CAS  Google Scholar 

  25. Diwan PK, Kumar S, Sharma V, Sharma SK, Mittal VK, Sannakki B, Mathad RD, Kumar KU, Khan SA, Avasthi DK (2003) Nucl Instr and Meth Phys Res B201:389

    Article  Google Scholar 

  26. Diwan PK, Sharma V, Kumar S, Mittal VK, Khan SA, Avasthi DK (2007) Nucl Instr and Meth Phys Res B258:293

    Article  CAS  Google Scholar 

  27. Sharma V, Diwan PK, Kumar S, Khan SA, Avasthi DK (2008) Nucl Instr and Meth Phys Res B266:3988

    Article  CAS  Google Scholar 

  28. Diwan PK, Sharma V, Kumar S, Khan SA, Avasthi DK (2008) Nucl Instr and Meth Phys Res B266:4738

    Article  CAS  Google Scholar 

  29. Sharma V, Diwan PK, Sharma T, Kumar S, Avasthi DK (2009) Indian J of Phys 83(7):937

    Article  CAS  Google Scholar 

  30. Diwan PK, Kumar S (2015) Nucl Instr and Meth Phys Res B359:78

    Article  CAS  Google Scholar 

  31. Kumar S, Diwan PK (2015) J Rad Res Appl Sci 8:538

    Google Scholar 

  32. Rauhala E, Raisanen J (1988) Nucl Instr and Meth Phys Res B35:130

    Article  CAS  Google Scholar 

  33. Rauhala E, Raisanen J (1990) Phys Rev B 42(7):3877

    Article  CAS  Google Scholar 

  34. Rauhala E, Raisanen J (1994) Radiat Eff Def Solids 128:163

    Article  Google Scholar 

  35. Raisanen J, Watjen U, Plompen AJM, Munnik F (1996) Nucl Instr and Meth Phys Res B118:1

    Article  Google Scholar 

  36. Hsu JY, Liang JH, Yu YC, Chen KM (2007) Nucl Instr Meth Phys Res B256:153

    Article  CAS  Google Scholar 

  37. Hsu JY, Yu YC, Chen KM (2010) Nucl Instr Meth Phys Res B268:1786

    Article  CAS  Google Scholar 

  38. Moussa D, Damache S, Ouichaoui S (2015) Nucl Instr Meth Phys Res B343:44

    Article  CAS  Google Scholar 

  39. Damache S, Djaroum S, Ouichaoui S, Amari L, Moussa D (2016) Nucl Instr Meth Phys Res B383:164

    Article  CAS  Google Scholar 

  40. Miksova R, Mackova A, Malinsky P, Hnatowicz V, Slepicka P (2014) Nucl Instr Meth Phys Res B331:42

    Article  CAS  Google Scholar 

  41. Miksova R, Hnatowicz V, Mackova A, Malinsky P, Slepicka P (2015) Nucl Instr Meth Phys Res B354:205

    Article  CAS  Google Scholar 

  42. Miksova R, Mackova A, Slepicka P (2016) Nucl Instr Meth Phys Res B371:81

    Article  CAS  Google Scholar 

  43. Miksova R, Mackova A, Malinsky P, Sofer Z (2017) Nucl Instr Meth Phys Res B406:173

    Article  CAS  Google Scholar 

  44. Mammeri S, Ammi H, Dib A, Pineda-Vargas CA, Ourabah S, Msimanga M, Chekirine M, Guesmia A (2012) Radiat Phys Chem 81:1862

    Article  CAS  Google Scholar 

  45. Montanari CC, Dimitrious P (2017) Nucl Instr Meth Phys Res B408:50

    Article  CAS  Google Scholar 

  46. Trzaska WH, Knyazheva GN, Perkowski J, Andrzejewski J, Khlebnikova SV, Kozulin EM, Malkiewicz T, Mutterer M, Savelieva EO (2018) Nucl Instr Meth Phys Res B418:1

    Article  CAS  Google Scholar 

  47. Zhang H, Lu X, Li Y, Ali X, Zhang X, Yang G (2002) J Phochem Photobiol A: Chem 147:15

    Article  CAS  Google Scholar 

  48. Zhang Y, Possnert G, Weber WJ (2002) Appl Phys Lett 80:4662

    Article  CAS  Google Scholar 

  49. Zhang Y, Weber WJ (2003) Appl Phys Lett 83:1665

    Article  CAS  Google Scholar 

  50. Feldman LC, Mayer JW (1986) Fundamentals of surface and thin film analysis. North-Holland, New York

    Google Scholar 

  51. Durrani SA, Bull RK (1987) Solid state nuclear track detection: principles, methods and applications. Pergamon Press, Oxford

    Google Scholar 

  52. Fano U (1963) Ann Rev Nucl Sci 13:1

    Article  CAS  Google Scholar 

  53. Bichsel H (1972) Passage of charge particles through matter. In: Gray DE (ed) American institute physics handbook, p. 8. McGraw-Hill, New York

    Google Scholar 

  54. Walske MC (1952) Phys Rev 88(6):1283

    Article  CAS  Google Scholar 

  55. Walske MC (1956) Phys Rev 101(3):940

    Article  CAS  Google Scholar 

  56. Bichsel H (1964) US Nat Acad Sci 1133:17

    Google Scholar 

  57. Bichsel H (1983) Phys Rev A 28:1147

    Article  CAS  Google Scholar 

  58. Bichsel H (1992) Phys Rev A 46(9):5761

    Article  CAS  PubMed  Google Scholar 

  59. Khandelwal GS (1968) Nucl Phys A 116:97

    Article  Google Scholar 

  60. Bonderup E (1967) Kgl Danske Videnskab Selskab Mat-Fys Medd 35(17)

    Google Scholar 

  61. Rousseau CC, Chu WK, Powers D (1970) Phys Rev A 4:1066

    Article  Google Scholar 

  62. Ziegler JF (1977) Helium stopping powers and ranges in all elemental matter. Pergamon, New York

    Google Scholar 

  63. Swann WFG (1938) J Franklin Inst 226:598

    Article  Google Scholar 

  64. Fermi E (1940) Phys Rev 57:485

    Article  CAS  Google Scholar 

  65. Sternheimer RM (1960) Phys Rev 117(2):485

    Article  CAS  Google Scholar 

  66. Sternheimer RM (1966) Phys Rev 145(1):247

    Article  CAS  Google Scholar 

  67. Sternheimer RM, Seltzer SM, Berger MJ (1982) Phys Rev B 26:6067

    Article  CAS  Google Scholar 

  68. Crispin A, Fowler GN (1970) Rev Mod Phys 42:290

    Article  CAS  Google Scholar 

  69. Bichsel H (1988) Rev Mod Phys 60:663

    Article  CAS  Google Scholar 

  70. Scheidenberger C, Geissel H (1998) Nucl Instr Meth Phys Res B135:25

    Article  Google Scholar 

  71. Ziegler JF (1999) J Appl Phys 85(3):1249

    Article  CAS  Google Scholar 

  72. Weaver BA, Westphal AJ (2002) Nucl Instr Meth Phys Res B187:285

    Article  Google Scholar 

  73. Lindhard J, Scharff M, Schiott HE (1963) Mat Fys Medd Dan Vid Selsk 33(14):1

    Google Scholar 

  74. Pape H, Clero HG, Schmidt KH (1978) Z Physik A286:159

    Article  Google Scholar 

  75. Sharma A, Kumar S, Sharma SK, Nath N, Harikumar V, Pathak AP, Goteti LNSP, Hui SK, Avasthi DK (1999) J Phys G: Nucl Part Phys 25:135

    Article  CAS  Google Scholar 

  76. Sharma A, Diwan PK, Kumar S, Sharma SK, Mittal VK, Nageswara Rao SVS, Sannakki B, Ghosh S, Avasthi DK (2002) Nucl Instr Meth Phys Res B194:7

    Article  Google Scholar 

  77. Diwan PK, Kumar S, Sharma V, Sharma SK, Mittal VK, Sannakki B, Mathad RD, Kumar S, Khan SA, Avasthi DK (2003) Nucl Instr Meth Phys Res B201:389

    Article  Google Scholar 

  78. Northcliffe LC, Schilling RF (1970) Nuclear Data Tables A7:233

    Article  Google Scholar 

  79. Ziegler JF, Biersack JP, Littmark U (1985) The stopping and range of ions in solids, vol 1. Pergamon Press, New York

    Google Scholar 

  80. Inokuti M, Itikawa Y, Turner JE (1978) Rev Mod Phys 50(1):23

    Article  CAS  Google Scholar 

  81. Jackson JD (1975) Classical Electrodynamics. Wiley, New York

    Google Scholar 

  82. Kreussler S, Varelas C, Brandt W (1981) Phys Rev B 23:82

    Article  CAS  Google Scholar 

  83. Ziegler JF, Biersack JP, Littmark U SRIM-2013.00 version. Available on www.srim.org

  84. Ziegler JF, Manoyan JM (1988) Nucl Instr Meth Phys Res B35:215

    Article  CAS  Google Scholar 

  85. Paul H, Schinner A (2001) Nucl Instr Meth Phys Res B179:299

    Article  Google Scholar 

  86. Paul H, Schinner A (2002) Nucl Instr Meth Phys Res B195:166

    Article  Google Scholar 

  87. Paul H, Schinner A (2003) At Data Nucl Data Tables 85:377

    Article  CAS  Google Scholar 

  88. Berger MJ, Coursey JS, Zucker MA, Chang J (2005) ESTAR, PSTAR, and ASTAR: computer programs for calculating stopping-power and range tables for electrons, protons, and helium ions. Available on https://physics.nist.gov/star

  89. Berger M, Bichsel H (1994) BEST, BEthe STopping power program

    Google Scholar 

  90. Paul H, Schinner A MSTAR version 3.12. Available on https://www-nds.iaea.org/stopping/MstarWWW/MSTARInstr.html

  91. Hubert F, Bimbot R, Gauvin H (1989) Nucl Instr Meth Phys Res B36:357

    Article  CAS  Google Scholar 

  92. Hubert F, Bimbot R, Gauvin H (1990) At Data Nucl Data Tables 46:1

    Article  CAS  Google Scholar 

  93. Sharma SK, Kumar S, Yadav JS, Sharma AP (1996) Appl Radiat Isot 46(1):39

    Article  Google Scholar 

  94. Kumar S, Sharma SK, Nath N, Harikumar V, Pathak AP, Kabiraj D, Avasthi DK (1996) Radiat Eff Def Solids 139:197

    Article  CAS  Google Scholar 

  95. Sharma A, Kumar S, Sharma SK, Diwan PK, Nath N, Mittal VK, Ghosh S, Avasthi DK (2000) Nucl Instr Meth Phys Res B170:323

    Article  Google Scholar 

  96. Diwan PK, Sharma A, Kumar S (2001) Nucl Instr Meth Phys Res B174:267

    Article  Google Scholar 

  97. Diwan PK, Kumar S (2004) Nucl Instr Meth Phys Res B215:27

    Article  CAS  Google Scholar 

  98. Oddershede J, Sabin JR (1989) Nucl Instr Meth Phys Res B42:7

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vishal Sharma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sharma, V., Diwan, P.K., Kumar, S. (2019). Energy Loss of Swift Heavy Ions: Fundamentals and Theoretical Formulations. In: Kumar, V., Chaudhary, B., Sharma, V., Verma, K. (eds) Radiation Effects in Polymeric Materials. Springer Series on Polymer and Composite Materials. Springer, Cham. https://doi.org/10.1007/978-3-030-05770-1_13

Download citation

Publish with us

Policies and ethics