Skip to main content

Part of the book series: Frontiers in Mathematics ((FM))

  • 552 Accesses

Abstract

Given a non-null, measurable and bounded set \(\Omega \subset \mathbb {R}^N\), we define its J-Cheeger constant

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 29.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 39.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. F. Alter, V. Caselles, Uniqueness of the Cheeger set of a convex body. Nonlinear Anal. Theory Methods Appl. 70, 32–44 (2009)

    Article  MathSciNet  Google Scholar 

  2. F. Alter, V. Caselles, A. Chambolle, A characterization of convex calibrable sets in \(\mathbb {R}^N\). Math. Ann. 332, 329–366 (2005)

    Article  MathSciNet  Google Scholar 

  3. F. Andreu-Vaillo, J.M. Mazón, J.D. Rossi, J. Toledo, Nonlocal Diffusion Problems. Mathematical Surveys and Monographs, vol. 165 (American Mathematical Society, Providence, 2010)

    Google Scholar 

  4. L. Brasco, E. Lindgren, E. Parini, The fractional Cheeger problem. Interfaces Free Bound. 16, 419–458 (2014)

    Article  MathSciNet  Google Scholar 

  5. H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations (Universitext/Springer, Heidelberg, 2011)

    MATH  Google Scholar 

  6. I. Ekeland, Convexity Methods in Hamiltonian Mechanics (Springer, Berlin, 1990)

    Book  Google Scholar 

  7. V. Fridman, B. Kawohl, Isoperimetric estimates for the first eigenvalue of the p-Laplace operator and the Cheeger constant. Comment. Math. Univ. Carol. 44, 659–667 (2003)

    MathSciNet  MATH  Google Scholar 

  8. D. Grieser, The first eigenvalue of the Laplacian, isoperimetric constants, and the max ow min cut theorem. Arch. Math. (Basel) 87, 75–85 (2006)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mazón, J.M., Rossi, J.D., Toledo, J.J. (2019). Nonlocal Cheeger and Calibrable Sets. In: Nonlocal Perimeter, Curvature and Minimal Surfaces for Measurable Sets. Frontiers in Mathematics. Birkhäuser, Cham. https://doi.org/10.1007/978-3-030-06243-9_5

Download citation

Publish with us

Policies and ethics