Skip to main content

Part of the book series: Frontiers in Mathematics ((FM))

  • 555 Accesses

Abstract

The heat content of a Borel measurable set \(D \subset \mathbb {R}^N\) at time t is defined by M. van der Berg in [69] (see also [70]) as:

$$\displaystyle \mathbb {H}_D(t) = \int _D T(t) {\chi }_D (x) dx, $$

with (T(t))t≥0 being the heat semigroup in \(L^2(\mathbb {R}^N)\). Therefore, the heat content represents the amount of heat in D at time t if in D the initial temperature is 1 and in \(\mathbb {R}^N \setminus D\) the initial temperature is 0.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 29.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 39.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. L. Acuña Valverde, Heat content estimates over sets of finite perimeter. J. Math. Anal. Appl. 441, 104–120 (2016)

    Article  MathSciNet  Google Scholar 

  2. L. Acuña Valverde, Heat content for stable processes in domains of \(\mathbb {R}^d\). J. Geom. Anal. 27, 492–524 (2017)

    Google Scholar 

  3. F. Andreu-Vaillo, J.M. Mazón, J.D. Rossi, J. Toledo, Nonlocal Diffusion Problems. Mathematical Surveys and Monographs, vol. 165 (American Mathematical Society, Providence, 2010)

    Google Scholar 

  4. A. Baernstein, Integral means, univalent functions and circular symmetrization. Acta Math. 133, 139–169 (1974)

    Article  MathSciNet  Google Scholar 

  5. W. Cygan, T. Grzywny, Heat content for convolution semigroups. J. Math. Anal. Appl. 446, 1393–1414 (2017)

    Article  MathSciNet  Google Scholar 

  6. W. Feller, An Introduction to Probability Theory and Its Applications, vol. II, 2nd edn. (Wiley, New York, 1971), pp. xxiv+669

    Google Scholar 

  7. M. Ledoux, Semigroup proofs of the isoperimetric inequality in Euclidean and Gauss space. Bull. Sci. Math. 118, 485–510 (1994)

    MathSciNet  MATH  Google Scholar 

  8. M. Miranda Jr., D. Pallara, F. Paronetto, M. Preunkert, Short-time heat flow and functions of bounded variation in \(\mathbb {R}^N\). Ann. Fac. Sci. Toulouse 16, 125–145 (2007)

    Google Scholar 

  9. M. Preunkert, A Semigroup version of the isoperimetric inequality. Semigroup Forum 68, 233–245 (2004)

    Article  MathSciNet  Google Scholar 

  10. M. van der Berg, Heat flow and perimeter in \(\mathbb {R}^m\). Potential Anal. 39, 369–387 (2013)

    Article  MathSciNet  Google Scholar 

  11. M. van der Berg, K. Gitting, Uniform bounds for the heat content of open set in Euclidean spaces. Diff. Geom. Appl. 40, 67–85 (2015)

    Article  MathSciNet  Google Scholar 

  12. M. van der Berg, J.F. Le Gall, Mean curvature and the heat equation. Math. Z. 215, 437–464 (1994)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mazón, J.M., Rossi, J.D., Toledo, J.J. (2019). Nonlocal Heat Content. In: Nonlocal Perimeter, Curvature and Minimal Surfaces for Measurable Sets. Frontiers in Mathematics. Birkhäuser, Cham. https://doi.org/10.1007/978-3-030-06243-9_6

Download citation

Publish with us

Policies and ethics