Skip to main content

Comparison Between Landslide Susceptibility Models: A Critical Review and Evaluation

  • Chapter
  • First Online:
Geoinformatics and Modelling of Landslide Susceptibility and Risk

Part of the book series: Environmental Science and Engineering ((ENVSCIENCE))

  • 440 Accesses

Abstract

Among the various natural hazards, slope failure is the most widespread and damaging hazard (De Smedt in Slope stability analysis using GIS on a regional scale: a case study of Narayanghat Mungling highway section, Nepal, 2005). A sudden failure of the slope is caused by sliding, rolling, falling or slumping. When failure occurs, material is transported down slope until a stable slope condition is re-established. The Darjeeling Himalayan terrain is very high susceptible to slope instability due to a complex geological structure and complex interaction among various processes acting upon the steep mountain southern escarpment slopes. In Darjeeling, the spatial extents of landslides are increasing day by day and causing severe damage to lives and properties. The Balason river basin is not an exception to it.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bui DT, Pradhan B, Lofman O, Revhaug I, Dick OB (2012) Spatial prediction of landslide hazards in Hoa Binh province (Vietnam): a comparative assessment of the efficacy of evidential belief functions and fuzzy logic models. Catena 96:28–40

    Article  Google Scholar 

  • Chen W, Li W (2014) Application of weights-of-evidence model in landslide susceptibility mapping at Baozhong Region in Baoji, China. Electron J Geotech Eng 19

    Google Scholar 

  • Chen W, Li W, Hou E (2014) Landslide susceptibility mapping based on GIS and information value model for the Chencang District of Baoji, China. Arab J Geosci 7:4499–4511

    Article  Google Scholar 

  • Choi J, Oh H-J, Lee H-J, Lee C, Lee S (2012) Combining landslide susceptibility maps obtained from frequency ratio, logistic regression, and artificial neural network models using ASTER images and GIS. Eng Geol 124:12–23. https://doi.org/10.1016/j.enggeo.2011.09.011

    Article  Google Scholar 

  • Devkota KC, Regmi AD, Yoshida KH, Pourghasemi R, Pradhan B, Althuwaynee OF, Dhital MR (2013) Landslide susceptibility mapping using certainty factor, index of entropy and logistic regression models in GIS and their comparison at Mugling-Narayanghat road section in Nepal Himalaya. Nat Hazards 65:135–165. https://doi.org/10.1007/s11069-012-0347-6

    Article  Google Scholar 

  • De Smedt F (2005) Slope stability analysis using GIS on a regional scale: a case study of Narayanghat Mungling highway section, Nepal. Dissertation of Master Degree, Universiteit Gent, Belgium

    Google Scholar 

  • Dou J, Yamagishi H, Pourghasemi HR, Song X, Xu Y, Zhu Z (2015) An integrated artificial neural network model for the landslide susceptibility assessment of Osado Island, Japan. Nat Hazards 78:1749–1776. https://doi.org/10.1007/s11069-015-1799-2

    Article  Google Scholar 

  • Gupta RP, Joshi BC (1990) Landslide hazard zonation using the GIS approach—a case study from the Ramganga Catchment, Himalayas. Eng Geol 28:119–131

    Article  Google Scholar 

  • Hong H, Pradhan B, Xu C, Bui DT (2015) Spatial prediction of landslide hazard at the Yihuang area (China) using two-class kernel logistic regression, alternating decision tree and support vector machines. Catena 133:266–281

    Article  Google Scholar 

  • Mohammady M, Pourghasemi HR, Pradhan B (2012) Landslide susceptibility mapping at Golestan Province, Iran: a comparison between frequency ratio, Dempster-Shafer, and weights-of-evidence models. J Asian Earth Sci 61:221–236

    Article  Google Scholar 

  • Montgomery DR, Dietrich WE (1994) A physically based model for the topographic control on shallow land sliding. Water Resour Res 30(4):1153–1171

    Article  Google Scholar 

  • Ozdemir A, Altural T (2013) A comparative study of frequency ratio, weights of evidence and logistic regression methods for landslide susceptibility mapping: Sultan Mountains, SW Turkey. J Asian Earth Sci 64:180–197

    Article  Google Scholar 

  • Pradhan B (2013) A comparative study on the predictive ability of the decision tree, support vector machine and neuro-fuzzy models in landslide susceptibility mapping using GIS. Comput Geosci 51:350–365

    Article  Google Scholar 

  • Pradhan B, Lee S (2010) Landslide susceptibility assessment and factor effect analysis: backpropagation artificial neural networks and their comparison with frequency ratio and bivariate logistic regression modelling. Environ Model Softw 25(6):747–759

    Article  Google Scholar 

  • Pradhan B, Oh HJ, Buchroithner M (2010) Weights-of-evidence model applied to landslide susceptibility mapping in a tropical hilly area. Geomat Nat Hazards Risk 1(3):199–223

    Article  Google Scholar 

  • Pourghasemi HR, Pradhan B, Gokceoglu C, Mohammadi M, Moradi HR (2013) Application of weights-of-evidence and certainty factor models and their comparison in landslide susceptibility mapping at Haraz watershed, Iran. Arab J Geosci 6(7):2351–2365

    Article  Google Scholar 

  • Sharma LP, Patel N, Ghose MK, Debnath P (2013) Synergistic application of fuzzy logic and geoinformatics for landslide vulnerability zonation—a case study in Sikkim Himalayas, India. Appl Geomat 5:271–284

    Article  Google Scholar 

  • Sujatha ER, Rajamanickam GV, Kumaravel P (2012) Landslide susceptibility analysis using probabilistic certainty factor approach: a case study on Tevankarai stream watershed, India. J Earth Syst Sci 121(5):1337–1350

    Article  Google Scholar 

  • Torkashvand AM, Irani A, Sorur J (2014) The preparation of landslide map by Landslide Numerical Risk Factor (LNRF) model and Geographic Information System (GIS). Egypt J Remote Sens Space Sci 17:159–170

    Article  Google Scholar 

  • van Westen CJ (1997) Statistical landslide hazard analysis. In: Application guide, ILWIS 2.1 for Windows. ITC, Enschede, The Netherlands, pp 73–84

    Google Scholar 

  • Yalcin A, Reis S, Aydinoglu AC, Yomralioglu T (2011) A GIS-based comparative study of frequency ratio, analytical hierarchy process, bivariate statistics and logistics regression methods for landslide susceptibility mapping in Trabzon, NE Turkey. Catena 85(3):274–287

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sujit Mandal .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mandal, S., Mondal, S. (2019). Comparison Between Landslide Susceptibility Models: A Critical Review and Evaluation. In: Geoinformatics and Modelling of Landslide Susceptibility and Risk. Environmental Science and Engineering(). Springer, Cham. https://doi.org/10.1007/978-3-030-10495-5_10

Download citation

Publish with us

Policies and ethics