Skip to main content

Agricultural Applications of Endophytic Microflora

  • Chapter
  • First Online:
Seed Endophytes

Abstract

Plants are colonized by various microbial communities which make substantial contribution in improving plant health and productivity. Endophytes are microbial populations that reside in host plants and play vital roles in plant growth and development and are considered as valuable tools in agriculture for improving crop performance. Endophytes promote plant growth through enhancing nitrogen fixation, phytohormone production, and phosphate solubilization and conferring tolerance to abiotic and biotic stresses. Endophytic microbial populations synthesize a vast variety of novel secondary metabolites including compounds with antifungal, antibacterial, and insecticidal properties. Biological control of plant pathogens and insect pests of cultivated crops gained attention as a method of decreasing the use of chemical pesticides in agriculture. The review describes various classes of secondary metabolites synthesized by endophytic microorganism with activity against insect pest and plant pathogens. Additionally, more plant species are to be explored for endophytic diversity and metabolites produced by them. This may lead to new developments in designing bio-based commercial products effective against crop and human pathogens.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abreu-Tarazi MF, Navarrete AA, Andreote FD et al (2010) Endophytic bacteria in long-term in vitro cultivated axenic pineapple microplants revealed by PCR-DGGE. World J Microbiol Biotechnol 26:555–560

    Article  Google Scholar 

  • Ahemad M (2015) Phosphate-solubilizing bacteria-assisted phytoremediation of metalliferous soils: a review. 3Biotech 5(2):111–121

    Google Scholar 

  • Akutse K, Maniania N, Fiaboe K et al (2013) Endophytic colonization of Vicia faba and Phaseolus vulgaris (Fabaceae) by fungal pathogens and their effects on the life-history parameters of Liriomyza huidobrensis (Diptera: Agromyzidae). Fungal Ecol 6:293–301

    Article  Google Scholar 

  • Ali S, Charles TC, Glick BR (2012) Delay of flower senescence by bacterial endophytes expressing 1-aminocyclopropane-1-carboxylate deaminase. J Appl Microbiol 113:1139–1114

    Article  CAS  PubMed  Google Scholar 

  • Aly AH, Debbab A, Proksch P (2011) Fungal endophytes: unique plant inhabitants with great promises. Appl Microbiol Biotechnol 90:1829–1845

    Article  CAS  PubMed  Google Scholar 

  • Araújo WL, Lacava PT, Andreote FD et al (2008) Interaction between endophytes and plant host: biotechnological aspects. In: Barka EA, Clement C (eds) Plant-microbe interactions. Research Signpost, Kerala, India, pp 95–115

    Google Scholar 

  • Arnold AE (2007) Understanding the diversity of foliar endophytic fungi: progress, challenges, and frontiers. Fungal Biol Rev 21:51–66

    Article  Google Scholar 

  • Arnold A (2008) Hidden within our botanical richness, a treasure trove of fungal endophytes, vol 32. Plant Press, pp 13–15

    Google Scholar 

  • Arnold AE, Lutzoni F (2007) Diversity and host range of foliar fungal endophytes: are tropical leaves biodiversity hotspots? Ecology 88:541–549

    Article  PubMed  Google Scholar 

  • Azevedo JL, Maccheron W, Pereira JO et al (2000) Endophytic microorganisms: a review on insect control and recent advances on tropical plants. Electron J Biotechnol North Am. https://doi.org/10.2225/vol3-issue1-fulltext-4

  • Bacon CW, Hill NS (1996) Symptomless grass endophytes: products of coevolutionary symbioses and their role in the ecological adaptations of grasses. In: Redlin SC, Carris LM (eds) Endophytic fungi in grasses and woody plants. American Phytopathological Society Press, St. Paul, MN, pp 155–178

    Google Scholar 

  • Bacon CW, White JF (2000) Microbial Endophytes. Marcel Dekker, New York, p 487

    Google Scholar 

  • Bacon CW, Glenn AE, Yates IE (2008) Fusarium verticillioides: managing the endophytic association with maize for reduced fumonisins accumulation. Toxin Rev 27:411–446

    Article  CAS  Google Scholar 

  • Bakker PAHM, Weisbeek PJ, Schipper’s B (1988) Siderophore production by plant growth promoting Pseudomonas spp. J Plant Nutr 11:925–933

    Article  CAS  Google Scholar 

  • Baltruschat H, Fodor J, Harrach BD et al (2008) Salt tolerance of barley induced by the root endophyte Piriformospora indica is associated with a strong increase in antioxidants. New Phytol 180:501–510

    Article  CAS  PubMed  Google Scholar 

  • Barea JM, Pozo MJ, Azcon R et al (2005) Microbial cooperation in the rhizosphere. J Exp Bot 56:17611778

    Article  CAS  Google Scholar 

  • Barka EA, Nowak J, Clément C (2006) Enhancement of chilling resistance of in occulated grapevine plantlets with a plant growth-promoting rhizobacterium, Burkholderia phytofirmans strain PsJN. Appl Environ Microbiol 72:7246–7252

    Article  CAS  Google Scholar 

  • Barrow JR, Lucero ME, Vera I R et al (2008) Do symbiotic microbes have a role in plant evolution, performance and response to stress? Commun Integr Biol 1:6973

    Article  Google Scholar 

  • Bills GF, Polishook JD (1991) Microfungi from Carpinus caroliniana. Can J Bot 69:1477–1482

    Article  Google Scholar 

  • Blankenship JD, Spiering MJ, Wilkinson HH et al (2001) Production of loline alkaloids by the grass endophyte, Neotyphodium uncinatum, in defined media. Phytochemistry 58:395–401

    Article  CAS  PubMed  Google Scholar 

  • Boberg JB, Ihrmark K, Lindahl BD (2011) Decomposing capacity of fungi commonly detected in Pinus sylvestris needle litter. Fungal Ecol 4:110–114

    Article  Google Scholar 

  • Boddey RM, De Oliveira OC, Urquiaga S et al (1995) Biological nitrogen fixation associated with sugar cane and rice: contributions and prospects for improvement. Plant Soil 174:195–209

    Article  CAS  Google Scholar 

  • Brader G, Compant S, Mitter B et al (2014) Metabolic potential of endophytic bacteria. Curr Opin Biotechnol 27:30–37

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bulgarelli D, Schlaeppi K, Spaepen S et al (2013) Structure and functions of the bacterial microbiota of plants. Annu Rev Plant Biol 64:807–838

    Article  CAS  PubMed  Google Scholar 

  • Calhoun LA, Findlay JA, Miller JD et al (1992) Metabolites toxic to spruce bud worm from balsam fir needle endophytes. Mycol Res 96:281–286

    Article  Google Scholar 

  • Canny M, Huang C (1993) What is in the intercellular spaces of roots? Evidence from the cryo-analytical-scanning electron microscope. Physiol Plant 87:561–568

    Article  CAS  Google Scholar 

  • Canny M, McCully M (1988) The xylem sap of maize roots: its collection, composition and formation. Funct Plant Biol 15:557–566

    Article  CAS  Google Scholar 

  • Card S, Johnson L, Teasdale S et al (2016) Deciphering microbial behaviour the link between endophyte biology and efficacious biological control agents. FEMS Microbiol Ecol 92. https://doi.org/10.1093/femsec/fiw114

  • Carter CJ, Cannon M, Smith KE (1976) Inhibition of protein synthesis in reticulocyte lysates by trichodermin. Biochem J 154:171–178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chang WY, Lantz VA, Hennigar CR et al (2012) Benefit-cost analysis of spruce budworm (Choristoneura fumiferana Clem.) control: incorporating market and non-market values. J Environ Manag 93:104–112

    Article  Google Scholar 

  • Chen L, Chen J, Zheng X et al (2007) Identification and antifungal activity of the metabolite of endophytic fungi isolated from Llex cornuta. Chin J Pestic Sci 9:143–150

    CAS  Google Scholar 

  • Cherry A, Lomer CJ, Djegui D et al (1999) Pathogen incidence and their potential as microbial control agents in IPM of maize stem borers in West Africa. Biocontrol 44:301–327

    Article  Google Scholar 

  • Christina A, Christapher V, Bhore SJ (2013) Endophytic bacteria as a source of novel antibiotics: an overview. Pharmacogn Rev 7:11–16

    Article  PubMed  PubMed Central  Google Scholar 

  • Compant S, Duffy B, Nowak J et al (2005) Use of plant growth-promoting bacteria for biocontrol of plant diseases: principles, mechanisms of action, and future prospects. Appl Environ Microbiol 71:4951–4959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coombs JT, Franco CMM (2003) Isolation and identification of Actinobacteria from surface-sterilized wheat roots. Appl Environ Microbiol 69:5603–5608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coombs JT, Michelsen PP, Franco CMM (2003) Evaluation of endophytic actinobacteria as antagonists of Gaeumannomyces graminis var. tritici in wheat. Biol Control 29:359–366

    Article  Google Scholar 

  • Crowley DE, Kraemer SM (2007) Function of siderophores in the plant rhizosphere. In: Pinton R et al (eds) The rhizosphere, biochemistry and organic substances at the soil-plant interface. CRC Press, Boca Raton, pp 73–109

    Google Scholar 

  • Daisy BH, Strobel GA, Castillo U et al (2002) Naphthalene, an insect repellent, is produced by Muscodor vitigenus, a novel endophytic fungus. Microbiology 148:3737–3741

    Article  CAS  PubMed  Google Scholar 

  • Daniels C, Michan C, Ramos JL (2009) New molecular tools for enhancing methane production, explaining thermodynamically limited lifestyles and other important biotechnological issues. Microb Biotechnol 2:533–536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Demain AL (2000) Microbial natural products: a past with a future. In: Chrystal EJT, Wrigley SK, Thomas R, Nicholson N, Hayes MA (eds) Biodiversity: new leads for pharmaceutical and agrochemical industries. The Royal Society of Chemistry, Cambridge, pp 3–16

    Google Scholar 

  • Du HJ, Zhang YQ, Liu HY et al (2013) Allonocardiopsis opalescens gen. nov., sp. nov., a new member of the suborder Streptosporangineae, from the surface-sterilized fruit of a medicinal plant. Int J Syst Evol Microbiol 63:900–904

    Article  CAS  PubMed  Google Scholar 

  • Estrada AER, Jonkers W et al (2012) Interactions between Fusarium verticillioides, Ustilago maydis, and Zea mays: an endophyte, a pathogen, and their shared plant host. Fungal Genet Biol 49:578–587

    Article  Google Scholar 

  • Findlay JA, Buthelezi S, Li G et al (1997) Insect toxins from an endophytic fungus from Wintergreen. J Nat Prod 60:1214–1215

    Article  CAS  Google Scholar 

  • Franken P (2012) The plant strengthening root endophyte Piriformospora indica: potential application and the biology behind. Appl Microbiol Biotechnol 96:1455–1464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frazier TP, Sun G, Burklew CE et al (2011) Salt and drought stresses induce the aberrant expression of microRNA genes in tobacco. Mol Biotechnol 49:159–165

    Article  CAS  PubMed  Google Scholar 

  • Gapper C, Dolan L (2006) Control of plant development by reactive oxygen species. Plant Physiol 141:341–345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Glick BR (2012) Plant growth-promoting bacteria: mechanisms and applications. Scientifica ID 963401

    Google Scholar 

  • Glick BR, Todorovic B, Czarny J et al (2007) Promotion of plant growth by bacterial ACC deaminase. Crit Rev Plant Sci 26:227–242

    Article  CAS  Google Scholar 

  • Gunatilaka AAL (2006) Natural products from plant-associated microorganisms: distribution, structural diversity, bioactivity, and implications of their occurrence. J Nat Prod 69:509–526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gurulingappa P, Sword GA, Murdoch G et al (2010) Colonization of crop plants by fungal entomopathogens and their effects on two insect pests when in planta. Biol Control 55:34–41

    Article  Google Scholar 

  • Hardoim PR, van Overbeek LS, Berg G et al (2015) The hidden world within plants: ecological and evolutionary considerations for defining functioning of microbial endophytes. Microbiol Mol Biol Rev 79:293–320

    Article  PubMed  PubMed Central  Google Scholar 

  • Hata K, Sone K (2008) Isolation of endophytes from leaves of Neolitsea sericea in broad leaf and conifer stands. Mycoscience 49:229–232

    Article  Google Scholar 

  • Hoffman MT, Gunatilaka MK, Wijeratne K et al (2013) Endohyphal bacterium enhances production of IAA by a foliar fungal endophyte. PLoS One 8(9):e73132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Indananda C, Matsumoto A, Inahashi Y et al (2010) Actinophytocola oryzae gen. nov., sp. nov., isolated from the roots of Thai glutinous rice plants, a new member of the family Pseudonocardiaceae. Int J Syst Evol Microbiol 60:1141–1146

    Article  CAS  PubMed  Google Scholar 

  • Janso JE, Carter GT (2010) Biosynthetic potential of phylogenetically unique endophytic actinomycetes from tropical plants. Appl Environ Microbiol 76:4377–4386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jha Y, Subramanian RB, Patel S (2011) Combination of endophytic and rhizospheric plant growth promoting rhizobacteria in Oryza sativa shows higher accumulation of osmoprotectant against saline stress. Acta Physiol Plant 33:797–802

    Article  Google Scholar 

  • Johnson LJ, De Bonth ACM, Briggs LR et al (2013) The exploitation of Epichloae endophytes for agricultural benefit. Fungal Divers 60:171–188

    Article  Google Scholar 

  • Johnson JM, Alex T, Oelmuller R (2014) Piriformospora indica: the versatile and multifunctional root endophytic fungus for enhanced yield and tolerance to biotic and abiotic stress in crop plants. J Trop Agric 52:103–122

    Google Scholar 

  • Karthikeyan B, Joe MM, Islam MR et al (2012) ACC deaminase containing diazotrophic endophytic bacteria ameliorate salt stress in Catharanthus roseus through reduced ethylene levels and induction of antioxidative defense systems. Symbiosis 56:77–86

    Article  CAS  Google Scholar 

  • Khan MS, Zaidi S, Ahamed M et al (2010) Plant growth promotion by phosphate solubilising fungi, Current perspective. Arch Agron Soil Sci 56:73–98

    Article  CAS  Google Scholar 

  • Khan AL, Hussain J, Al-Harrasi A et al (2013) Endophytic fungi: resource for gibberellins and crop abiotic stress resistance. Crit Rev Biotechnol:1–13

    Google Scholar 

  • Khan AL, Boshra AH, Ali E et al (2016) Indole 3 acetic acid and ACC deaminase from endophytic bacteria improves the growth of Solanum lycopersicum. Electron J Biotechnol 21:58–64. https://doi.org/10.1016/j.ejbt.2016.02.001

    Article  CAS  Google Scholar 

  • Knoth JL, Kim SH, Ettl GJ et al (2014) Biological nitrogen fixation and biomass accumulation within poplar clones as a result of inoculations with diazotrophic endophyte consortia. New Phytol 201:599–609

    Article  CAS  PubMed  Google Scholar 

  • Kuklinsky-Sobral J, Araújo WL, Mendes R et al (2004) Isolation and characterization of soybean associated bacteria and their potential for plant growth promotion. Environ Microbiol 6:1244–1251

    Article  CAS  PubMed  Google Scholar 

  • Li JY, Strobel GA (2001) Jesterone and hydroxy-jesterone antioomycete cyclohexenone epoxides from the endophytic fungus Pestalotiopsis jesteri. Phytochemistry 57:261–265

    Article  CAS  PubMed  Google Scholar 

  • Li JY, Strobel G, Harper J et al (2000) Cryptocin, a potent tetramic acid antimycotic from the endophytic fungus Cryptosporiopsis cf. quercina. Org Lett 2:767–770

    Article  PubMed  CAS  Google Scholar 

  • Li JY, Harper JK, Grant DM et al (2001) Ambuic acid, a highly functionalized cyclohexenone with antifungal activity from Pestalotiopsis spp. and Monochaetia sp. Phytochemistry 56:463–468

    Article  CAS  PubMed  Google Scholar 

  • Long H, Schmidt D, Baldwin I (2008) Native bacterial endophytes promote host growth in a species-specific manner; phytohormone manipulations do not result in common growth responses. PLoS One 3:e2702

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ma Y, Szostkiewicz I, Korte A et al (2009) Regulators of PP2C phosphatase activity function as abscisic acid sensors. Science 324:1064–1068

    CAS  PubMed  Google Scholar 

  • Madore M, Webb JA (1981) Leaf free space analysis and vein loading in Cucurbita pepo. Can J Bot 59:2550–2557

    Article  CAS  Google Scholar 

  • Miller JD, MacKenzie S, Foto M et al (2002) Needles of white spruce inoculated with rugulosin-producing endophytes contain rugulosin reducing spruce bud-worm growth rate. Mycol Res 106:471–479

    Article  Google Scholar 

  • Miller SH, Browne P, Prignent-camberat C et al (2010) Biochemical and genomical comparison of inorganic phosphate solubilization in Pseudomonas species. Enviorn Microbiol Rep 2:403–411

    Article  CAS  Google Scholar 

  • Motsara MR, Bhattacharya PB, Sreevastava B (1995) Biofertilizers, their description and usage. A source book- cum- glossary, vol 204. Fertilizer Development and Consultation Organisation, New Delhi, pp 9–18

    Google Scholar 

  • Nair DN, Padmavathy S (2014) Impact of endophytic microorganisms on plants, environment and humans. SciWorld J 2014:1–11

    Google Scholar 

  • Nudel C, Gonzalez R, Castaneda N et al (2001) Influence of iron on growth, production of siderophore compounds, membrane proteins, and lipase activity in Acinetobacter calcoaceticus BD 413. Microbiol Res 155:263–269

    Article  CAS  PubMed  Google Scholar 

  • Orole O, Adejumo T (2009) Activity of fungal endophytes against four maize wilt pathogens. Afr J Microbiol Res 3:969–973

    Google Scholar 

  • Orozco-Mosqueda MDC, Rocha-Granados MDC, Glick BR et al (2018) Microbiome engineering to improve biocontrol and plant growth-promoting mechanisms. Microbiol Res 208:25–31

    Article  CAS  PubMed  Google Scholar 

  • Ownley BH, Griffin MR, Klingeman WE et al (2008) Beauveria bassiana: endophytic colonization and plant disease control. J Invertebr Pathol 98:267–270

    Article  CAS  PubMed  Google Scholar 

  • Pande A, Pandey P, Mehra S et al (2017) Phenotypic and genotypic characterisation of phosphate solubilising bacteria and their efficiency on the growth of maize. J Genet Eng Biotechnol 15:379–339

    Article  PubMed  PubMed Central  Google Scholar 

  • Park JH, Choi GJ, Lee SW et al (2005) Griseofulvin from Xylaria sp. strain F0010, an endophytic fungus of Abies holophylla and its antifungal activity against plant pathogenic fungi. J Microbiol Biotechnol 15:112–117

    CAS  Google Scholar 

  • Parniske M (2008) Arbuscular mycorrhiza: the mother of plant root endosymbioses. Nat Rev Microbiol 6:763–775

    Article  CAS  PubMed  Google Scholar 

  • Parsa S, Ortiz V, Vega FE (2013) Establishing fungal entomopathogens as endophytes: towards endophytic biological control. J Vis Exp (74):50360

    Google Scholar 

  • Parsa S, Ortiz V, Gómez-Jiménez MI et al (2016) Root environment is a key determinant of fungal entomopathogen endophytism following seed treatment in the common bean, Phaseolus vulgaris. Biol Control 116:74–81

    Article  Google Scholar 

  • Pavlo A, Leonid O, Iryna Z et al (2011) Endophytic bacteria enhancing growth and disease resistance of potato (Solanum tuberosum L.). Biol Control 56:43–49

    Article  Google Scholar 

  • Pimentel D (2009) Pesticides and pest control. In: Peshi R, Dhawan AK (eds) Integrated pest management: innovation-development process. Springer, Amsterdam, pp 83–87

    Chapter  Google Scholar 

  • Pimentel IC, Glienke-Blanco C, Gabardo J et al (2006) Identification and colonization of endophytic fungi from soybean (Glycine max (L.) Merril) under different environmental conditions. Braz Arch Biol Technol 49:705–711

    Article  Google Scholar 

  • Pinheiro EA, Carvalho JM, Santos DC et al (2013) Chemical constituents of Aspergillus sp. EJC08 isolated as endophyte from Bauhinia guianensis and their antimicrobial activity. An Acad Bras Cienc 85:1247–1253

    Article  CAS  PubMed  Google Scholar 

  • Qayyum MA, Wakil W, Arif MJ et al (2015) Infection of Helicoverpa armigera by endophytic Beauveria bassiana colonizing tomato plants. Biol Control 90:200–207

    Article  Google Scholar 

  • Qin S, Li J, Zhang YQ et al (2009) Plantactinospora mayteni gen. nov., sp. nov., a member of the family Micromonosporaceae. Int J Syst Evol Microbiol 59:2527–2533

    Article  CAS  PubMed  Google Scholar 

  • Raaijmakers JM, Mazzola M (2012) Diversity and natural functions of antibiotics produced by beneficial and plant pathogenic bacteria. Annu Rev Phytopathol 50:403–424

    Article  CAS  PubMed  Google Scholar 

  • Rajkumar M, Ae N, Freitas H (2009) Endophytic bacteria and their potential to enhance heavy metal phytoextraction. Chemosphere 77:153–160

    Article  CAS  PubMed  Google Scholar 

  • Ravel C, Courty C, Coudret A et al (1997) Beneficial effects of Neotyphodium lolii on the growth and the water status in perennial ryegrass cultivated under nitrogen deficiency or drought stress. Agronomie 17:173–181

    Article  Google Scholar 

  • Reinhold HB, Hurek T (2010) Interactions of gramineous plants with Azoarcus spp. and other Diazotrophs: identification, localization, and perspectives to study their function. Crit Rev Plant Sci 17:29–54

    Article  Google Scholar 

  • Rodriguez R, Redman R (2008) More than 400 million years of evolution and some plants still can’t make it on their own: plant stress tolerance via fungal symbiosis. J Exp Bot 59:1109–1114

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez H, Fraga R, Gonzalez T et al (2006) Genetics of phosphate solubilization and its potential applications for improving plant growth-promoting bacteria. Plant Soil 287:15–21

    Article  CAS  Google Scholar 

  • Rosenblueth M, Martínez-Romero E (2004) Rhizobium etli maize populations and their competitiveness for root colonization. Arch Microbiol 181:337–344

    Article  CAS  PubMed  Google Scholar 

  • Rowan DD (1993) Lolitrems, peramine and paxilline: mycotoxins of the ryegrass endophyte interaction. Agric Ecosyst Environ 44:103–122

    Article  CAS  Google Scholar 

  • Russo ML, Pelizza SA, Cabello MN et al (2015) Endophytic colonisation of tobacco, corn, wheat and soybeans by the fungal entomopathogen Beauveria bassiana (Ascomycota, Hypocreales). Biocontrol Sci Tech 25:475–480

    Article  Google Scholar 

  • Rybakova D, Cernava T, Köberl M et al (2015) Endophytes-assisted biocontrol: novel insights in ecology and the mode of action of Paenibacillus. Plant Soil 405:125–140

    Article  CAS  Google Scholar 

  • Santoyo G, Monero G, Glick BR (2015) Plant growth promoting bacterial endophytes. Microbiol Res 183:92–95

    Article  PubMed  CAS  Google Scholar 

  • Schardl CL, Leuchtmann A, Spiering MJ (2004) Symbioses of grasses with seedborne fungal endophytes. Annu Rev Plant Biol 55:315–340

    Article  CAS  PubMed  Google Scholar 

  • Seghers D, Wittebolle L, Top EM et al (2004) Impact of agricultural practices on the Zea mays L. endophytic community. Appl Environ Microbiol 70:1475–1482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sessitsch A, Coenye T, Sturz AV et al (2005) Burkholderia phytofirmins sp Nov, a novel plant-associated bacterium with plant beneficial properties. Int J Syst Evol Microbiol 55:1187–1192

    Article  CAS  PubMed  Google Scholar 

  • Shentu X, Zhan X, Ma Z et al (2014) Antifungal activity of metabolites of the endophytic fungus Trichoderma brevicompactum from garlic. Braz J Microbiol 45:248–254

    Article  PubMed  PubMed Central  Google Scholar 

  • Siegel MR, Latch GC, Bush LP et al (1990) Fungal endophyte-infected grasses: alkaloid accumulation and aphid response. J Chem Ecol 16:3301–3315

    Article  CAS  PubMed  Google Scholar 

  • Silva GH, Teles HL, Zanardi LM et al (2006) Cadinane sesquiterpenoids of Phomopsis cassiae, an endophytic fungus associated with Cassia spectabilis (Leguminosae). Phytochemistry 67:1964–1969

    Article  CAS  PubMed  Google Scholar 

  • Silva GH, DeOliveira CM, Teles HL et al (2010) Sesquiterpenes from Xylaria sp., an endophytic fungus associated with Piper aduncum (Piperaceae). Phytochem Lett 3:164–167

    Article  CAS  Google Scholar 

  • Souza SA, Xavier AA, Costa MR et al (2013) Endophytic bacterial diversity in banana ‘Prata Anã’ (Musa spp.) roots. Genet Mol Biol 36:252–264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spaepen S, Vanderleyden J, Remans R (2007) Indole-3-acetic acid in microbial and microorganism -plant signaling. FEMS Microbiol Rev 31:425–448

    Article  CAS  PubMed  Google Scholar 

  • Specian V, Sarragiotto MH, Pamphile JA et al (2012) Chemical characterization of bioactive compounds from the endophytic fungus Diaporthe helianthi isolated from Luehea divaricata. Braz J Microbial 43:1174–1182

    Article  CAS  Google Scholar 

  • Stepniewska Z, Kuzniar A (2013) Endophytic microorganisms-promising applications in bioremediation of greenhouse gases. Appl Microbiol Biotechnol 97:9589–9596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stierle AA, Stierle DB (2015) Bioactive secondary metabolites produced by the fungal endophytes of conifers. Nat Prod Commun 10:1671–1682

    PubMed  PubMed Central  Google Scholar 

  • Strobel G, Daisy B (2003) Bioprospecting for microbial endophytes and their natural products. Microbiol Mol Biol Rev 67:491–502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Strobel GA, Miller RV, Martinez-Miller C et al (1999) Cryptocandin, a potent antimycotic from the endophytic fungus Cryptosporiopsis cf. quercina. Microbiology 145:1919–1926

    Article  CAS  PubMed  Google Scholar 

  • Strobel G, Daisy B, Castillo U et al (2004) Natural products from endophytic microorganisms. J Nat Prod 67:257–268

    Article  CAS  PubMed  Google Scholar 

  • Sun C, Johnson J, Cai D et al (2010) Piriformospora indica confers drought tolerance in Chinese cabbage leaves by stimulating antioxidant enzymes, the expression of drought related genes and the plastid-localized CAS protein. J Plant Physiol 167:1009–1017

    Article  CAS  PubMed  Google Scholar 

  • Suryakala D, Maheshwaridevi PV, Lakshmi KV (2004) Chemical characterization and in vitro antibiosis of siderophores of rhizosphere fluorescent Pseudomonads. Indian J Microbiol 44:105–108

    CAS  Google Scholar 

  • Tan RX, Zou WX (2001) Endophytes: a rich source of functional metabolites. Nat Prod Rep 18:448–459

    Article  CAS  PubMed  Google Scholar 

  • Varughese T, Riosa N, Higginbotham S et al (2012) Antifungal depsidone metabolites from Cordyceps dipterigena, an endophytic fungus antagonistic to the phytopathogen Gibberella fujikuroi. Tetrahedron Lett 53:1624–1626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vega FE (2008) Insect pathology and fungal endophytes. J Invertebr Pathol 98:277–279

    Article  PubMed  Google Scholar 

  • Vega FE, Simpkins A, Aime MC et al (2010) Fungal endophyte diversity in coffee plants from Colombia, Hawaii, Mexico and Puerto Rico. Fungal Ecol 3:122–138

    Article  Google Scholar 

  • Waller F, Achatz B, Baltruschat H et al (2005) The endophytic fungus Piriformospora indica reprograms barley to salt-stress tolerance, disease resistance, and higher yield. Proc Natl Acad Sci U S A 102:13386–13391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang M, Xing Y, Wang J et al (2014) The role of the chi1 gene from the endophytic bacteria Serratia proteamaculans 336x in the biological control of wheat take-all. Can J Microbiol 60:533–540

    Article  CAS  PubMed  Google Scholar 

  • Waqas M, Khan AL, Lee IJ (2013) Bioactive chemical constituents produced by endophytes and effects on rice plant growth. J Plant Interact 9(1):478–487. https://doi.org/10.1080/17429145.2013.860562

    Article  CAS  Google Scholar 

  • Weerapreeyakul N, Anorach R, Khuansawad T et al (2007) Synthesis of bioreductive esters from fungal compounds. Chem Pharm Bull 55:930–935

    Article  CAS  Google Scholar 

  • White JF Jr, Torres MS (2010) Is plant endophyte – mediated defensive mutualism the result of oxidative stress protection. Physiol Plant 138:440–446

    Article  CAS  PubMed  Google Scholar 

  • Wilkinson HH, Siegel MR, Blankenship JD et al (2000) Contribution of fungal loline alkaloids to protection from aphids in a grass endophyte mutualism. Mol Plant-Microbe Interact 13:1027–1103

    Article  CAS  PubMed  Google Scholar 

  • Yadav A, Yadav K (2017) Exploring the potential of endophytes in agriculture: a minireview. Adv Plants Agric Res 6:1–5

    Google Scholar 

  • Yazdani M, Bahmanyar MA, Pirdashti H et al (2009) Effect of phosphate solubilization microorganisms (PSM) and plant growth promoting rhizobacteria (PGPR) on yield and yield components of corn (Zea mays L). World Acad Sci Eng Technol 49:90–92

    Google Scholar 

  • Zhang HW, Song YC, Tan RX (2006) Biology and chemistry of endophytes. Nat Prod Rep 23:753–771

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Li C, Nan Z (2012) Effects of cadmium stress on seed germination and seedling growth of Elymus dahuricus infected with the Neotyphodium endophyte. Sci China Life Sci 55:793–799

    Article  CAS  PubMed  Google Scholar 

  • Zou WX, Meng JC, Lu H et al (2000) Metabolites of Colletotrichum gloeosporioides, an endophytic fungus in Artemisia mongolica. J Nat Prod 63:1529–1530

    Article  CAS  PubMed  Google Scholar 

Download references

Conflict of Interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mathew Linu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Reshma, J., Vinaya, C., Linu, M. (2019). Agricultural Applications of Endophytic Microflora. In: Verma, S., White, Jr, J. (eds) Seed Endophytes. Springer, Cham. https://doi.org/10.1007/978-3-030-10504-4_18

Download citation

Publish with us

Policies and ethics