Skip to main content

Pseudospin-1 Systems as a New Frontier for Research on Relativistic Quantum Chaos

  • Conference paper
  • First Online:
Proceedings of the 5th International Conference on Applications in Nonlinear Dynamics

Part of the book series: Understanding Complex Systems ((UCS))

  • 625 Accesses

Abstract

Pseudospin-1 systems are characterized by the feature that their band structure consists of a pair of Dirac cones and a topologically flat band. Such systems can be realized in a variety of physical systems ranging from dielectric photonic crystals to electronic materials. Theoretically, massless pseudospin-1 systems are described by the generalized Dirac-Weyl equation governing the evolution of a three-component spinor. Recent works have demonstrated that such systems can exhibit unconventional physical phenomena such as revival resonant scattering, superpersistent scattering, super-Klein tunneling, perfect caustics, vanishing Berry phase, and isotropic low energy scattering. We argue that investigating the interplay between pseudospin-1 physics and classical chaos may constitute a new frontier area of research in relativistic quantum chaos with significant applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. K.S. Novoselov et al., Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004)

    Article  Google Scholar 

  2. C. Berger et al., Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics. J. Phys. Chem. B 108, 19912–19916 (2004)

    Article  Google Scholar 

  3. T. Wehling, A. Black-Schaffer, A. Balatsky, Dirac materials. Adv. Phys. 63, 1–76 (2014)

    Article  Google Scholar 

  4. J. Wang, S. Deng, Z. Liu, Z. Liu, The rare two-dimensional materials with Dirac cones. Natl. Sci. Rev. 2(1), 22–39 (2015)

    Article  Google Scholar 

  5. M.Z. Hasan, C.L. Kane, Colloquium: topological insulators. Rev. Mod. Phys. 82, 3045–3067 (2010)

    Article  Google Scholar 

  6. X.-L. Qi, S.-C. Zhang, Topological insulators and superconductors. Rev. Mod. Phys. 83, 1057–1110 (2011)

    Article  Google Scholar 

  7. X.-L. Qi, T.L. Hughes, S.-C. Zhang, Topological field theory of time-reversal invariant insulators. Phys. Rev. B 78, 195424 (2008)

    Article  Google Scholar 

  8. A.M. Essin, J.E. Moore, D. Vanderbilt, Magnetoelectric polarizability and axion electrodynamics in crystalline insulators. Phys. Rev. Lett. 102, 146805 (2009)

    Article  Google Scholar 

  9. C.-Z. Chang et al., Zero-field dissipationless chiral edge transport and the nature of dissipation in the quantum anomalous hall state. Phys. Rev. Lett. 115, 057206 (2015)

    Article  Google Scholar 

  10. Y.H. Wang et al., Observation of chiral currents at the magnetic domain boundary of a topological insulator. Science 349, 948–952 (2015)

    Article  Google Scholar 

  11. M.C. Rechtsman et al., Topological creation and destruction of edge states in photonic graphene. Phys. Rev. Lett. 111, 103901 (2013)

    Article  Google Scholar 

  12. Y. Plotnik et al., Observation of unconventional edge states in photonic graphene. Nat. Mater. 13, 57–62, (2014) (Article)

    Article  Google Scholar 

  13. Z. Wang, Y.D. Chong, J.D. Joannopoulos, M. Soljačić, Reflection-free one-way edge modes in a gyromagnetic photonic crystal. Phys. Rev. Lett. 100, 013905 (2008)

    Article  Google Scholar 

  14. Z. Wang, Y. Chong, J.D. Joannopoulos, M. Soljacic, Observation of unidirectional backscattering-immune topological electromagnetic states. Nature (London) 461, 772–775 (2009)

    Article  Google Scholar 

  15. M. Hafezi, E.A. Demler, M.D. Lukin, J.M. Taylor, Robust optical delay lines with topological protection. Nat. Phys. 7, 907–912 (2011)

    Article  Google Scholar 

  16. K. Fang, Z. Yu, S. Fan, Realizing effective magnetic field for photons by controlling the phase of dynamic modulation. Nat. Photonics 6, 782–787 (2012)

    Article  Google Scholar 

  17. A.B. Khanikaev et al., Photonic topological insulators. Nat. Mater. 12, 233–239 (2013)

    Article  Google Scholar 

  18. L. Lu, J.D. Joannopoulos, M. Soljaclc, Topological photonics. Nat. Photonics 8, 821–829 (2014)

    Article  Google Scholar 

  19. X. Huang, Y. Lai, Z.H. Hang, H. Zheng, C.T. Chan, Dirac cones induced by accidental degeneracy in photonic crystals and zero-refractive-index materials. Nat. Mater. 10, 582–586 (2011)

    Article  Google Scholar 

  20. J. Mei, Y. Wu, C.T. Chan, Z.-Q. Zhang, First-principles study of Dirac and Dirac-like cones in phononic and photonic crystals. Phys. Rev. B 86, 035141 (2012)

    Article  Google Scholar 

  21. P. Moitra et al., Realization of an all-dielectric zero-index optical metamaterial. Nat. Photonics 7, 791–795 (2013)

    Article  Google Scholar 

  22. Y. Li et al., On-chip zero-index metamaterials. Nat. Photonics 9, 738–742 (2015)

    Article  Google Scholar 

  23. A. Fang, Z.Q. Zhang, S.G. Louie, C.T. Chan, Klein tunneling and supercollimation of pseudospin-1 electromagnetic waves. Phys. Rev. B 93, 035422 (2016)

    Article  Google Scholar 

  24. D. Guzmán-Silva et al., Experimental observation of bulk and edge transport in photonic Lieb lattices. New J. Phys. 16, 063061 (2014)

    Article  Google Scholar 

  25. S. Mukherjee et al., Observation of a localized flat-band state in a photonic Lieb lattice. Phys. Rev. Lett. 114, 245504 (2015)

    Article  Google Scholar 

  26. R.A. Vicencio et al., Observation of localized states in Lieb photonic lattices. Phys. Rev. Lett. 114, 245503 (2015)

    Article  Google Scholar 

  27. F. Diebel, D. Leykam, S. Kroesen, C. Denz, A.S. Desyatnikov, Conical diffraction and composite Lieb bosons in photonic lattices. Phys. Rev. Lett. 116, 183902 (2016)

    Article  Google Scholar 

  28. S. Taie et al., Coherent driving and freezing of bosonic matter wave in an optical Lieb lattice. Sci. Adv. 1, e1500854 (2015)

    Article  Google Scholar 

  29. M. Rizzi, V. Cataudella, R. Fazio, Phase diagram of the Bose-Hubbard model with \(T\_3\) symmetry. Phys. Rev. B 73, 144511 (2006)

    Google Scholar 

  30. A.A. Burkov, E. Demler, Vortex-peierls states in optical lattices. Phys. Rev. Lett. 96, 180406 (2006)

    Article  Google Scholar 

  31. D. Bercioux, D.F. Urban, H. Grabert, W. Häusler, Massless Dirac-Weyl fermions in a \({T}_{3}\) optical lattice. Phys. Rev. A 80, 063603 (2009)

    Article  Google Scholar 

  32. B. Dóra, J. Kailasvuori, R. Moessner, Lattice generalization of the Dirac equation to general spin and the role of the flat band. Phys. Rev. B 84, 195422 (2011)

    Article  Google Scholar 

  33. A. Raoux, M. Morigi, J.-N. Fuchs, F. Piéchon, G. Montambaux, From dia- to paramagnetic orbital susceptibility of massless fermions. Phys. Rev. Lett. 112, 026402 (2014)

    Article  Google Scholar 

  34. T. Andrijauskas et al., Three-level Haldane-like model on a dice optical lattice. Phys. Rev. A 92, 033617 (2015)

    Article  Google Scholar 

  35. F. Wang, Y. Ran, Nearly flat band with Chern number \(c=2\) on the dice lattice. Phys. Rev. B 84, 241103 (2011)

    Article  Google Scholar 

  36. J. Wang, H. Huang, W. Duan, Z. Liu, Identifying Dirac cones in carbon allotropes with square symmetry. J. Chem. Phys. 139, 184701 (2013)

    Article  Google Scholar 

  37. W. Li, M. Guo, G. Zhang, Y.-W. Zhang, Gapless \({\text{ MoS }}_2\) allotrope possessing both massless Dirac and heavy fermions. Phys. Rev. B 89, 205402 (2014)

    Article  Google Scholar 

  38. J. Romhanyi, K. Penc, R. Ganesh, Hall effect of triplons in a dimerized quantum magnet. Nat. Commun. 6, 6805 (2015)

    Google Scholar 

  39. G. Giovannetti, M. Capone, J. van den Brink, C. Ortix, Kekulé textures, pseudospin-one Dirac cones, and quadratic band crossings in a graphene-hexagonal indium chalcogenide bilayer. Phys. Rev. B 91, 121417 (2015)

    Article  Google Scholar 

  40. G.-L. Wang, H.-Y. Xu, Y.-C. Lai, Mechanical topological semimetals with massless quasiparticles and a finite berry curvature. Phys. Rev. B 95, 235159 (2017)

    Google Scholar 

  41. R. Shen, L.B. Shao, B. Wang, D.Y. Xing, Single Dirac cone with a flat band touching on line-centered-square optical lattices. Phys. Rev. B 81, 041410 (2010)

    Article  Google Scholar 

  42. D.F. Urban, D. Bercioux, M. Wimmer, W. Häusler, Barrier transmission of Dirac-like pseudospin-one particles. Phys. Rev. B 84, 115136 (2011)

    Article  Google Scholar 

  43. M. Vigh et al., Diverging dc conductivity due to a flat band in a disordered system of pseudospin-1 Dirac-Weyl fermions. Phys. Rev. B 88, 161413 (2013)

    Article  Google Scholar 

  44. J.T. Chalker, T.S. Pickles, P. Shukla, Anderson localization in tight-binding models with flat bands. Phys. Rev. B 82, 104209 (2010)

    Article  Google Scholar 

  45. J.D. Bodyfelt, D. Leykam, C. Danieli, X. Yu, S. Flach, Flatbands under correlated perturbations. Phys. Rev. Lett. 113, 236403 (2014)

    Article  Google Scholar 

  46. E.H. Lieb, Two theorems on the Hubbard model. Phys. Rev. Lett. 62, 1201–1204 (1989)

    Article  MathSciNet  Google Scholar 

  47. H. Tasaki, Ferromagnetism in the Hubbard models with degenerate single-electron ground states. Phys. Rev. Lett. 69, 1608–1611 (1992)

    Article  MathSciNet  Google Scholar 

  48. H. Aoki, M. Ando, H. Matsumura, Hofstadter butterflies for flat bands. Phys. Rev. B 54, R17296–R17299 (1996)

    Article  Google Scholar 

  49. C. Weeks, M. Franz, Topological insulators on the Lieb and perovskite lattices. Phys. Rev. B 82, 085310 (2010)

    Article  Google Scholar 

  50. N. Goldman, D.F. Urban, D. Bercioux, Topological phases for fermionic cold atoms on the Lieb lattice. Phys. Rev. A 83, 063601 (2011)

    Article  Google Scholar 

  51. J. Vidal, R. Mosseri, B. Douçot, Aharonov-Bohm cages in two-dimensional structures. Phys. Rev. Lett. 81, 5888–5891 (1998)

    Article  Google Scholar 

  52. H.-Y. Xu, Y.-C. Lai, Revival resonant scattering, perfect caustics, and isotropic transport of pseudospin-1 particles. Phys. Rev. B 94, 165405 (2016)

    Article  Google Scholar 

  53. H.-Y. Xu, Y.-C. Lai, Superscattering of a pseudospin-1 wave in a photonic lattice. Phys. Rev. A 95, 012119 (2017)

    Google Scholar 

  54. H.-Y. Xu, L. Huang, D. Huang, Y.-C. Lai, Geometric valley Hall effect and valley filtering through a singular Berry flux. Phys. Rev. B 96, 045412 (2017)

    Google Scholar 

  55. M.I. Katsnelson, K.S. Novoselov, A.K. Geim, Chiral tunnelling and the Klein paradox in graphene. Nat. Phys. 2, 620–625 (2006)

    Article  Google Scholar 

  56. D.S. Novikov, Elastic scattering theory and transport in graphene. Phys. Rev. B 76, 245435 (2007)

    Article  Google Scholar 

  57. M.I. Katsnelson, F. Guinea, A.K. Geim, Scattering of electrons in graphene by clusters of impurities. Phys. Rev. B 79, 195426 (2009)

    Article  Google Scholar 

  58. J.-S. Wu, M.M. Fogler, Scattering of two-dimensional massless Dirac electrons by a circular potential barrier. Phys. Rev. B 90, 235402 (2014)

    Article  Google Scholar 

  59. J. Cserti, A. Pályi, C. Péterfalvi, Caustics due to a negative refractive index in circular graphene \(p\rm \text{- }n\) junctions. Phys. Rev. Lett. 99, 246801 (2007)

    Article  Google Scholar 

  60. R.L. Heinisch, F.X. Bronold, H. Fehske, Mie scattering analog in graphene: Lensing, particle confinement, and depletion of Klein tunneling. Phys. Rev. B 87, 155409 (2013)

    Article  Google Scholar 

  61. M.M. Asmar, S.E. Ulloa, Rashba spin-orbit interaction and birefringent electron optics in graphene. Phys. Rev. B 87, 075420 (2013)

    Article  Google Scholar 

  62. B. Liao, M. Zebarjadi, K. Esfarjani, G. Chen, Isotropic and energy-selective electron cloaks on graphene. Phys. Rev. B 88, 155432 (2013)

    Article  Google Scholar 

  63. M.M. Asmar, S.E. Ulloa, Spin-orbit interaction and isotropic electronic transport in graphene. Phys. Rev. Lett. 112, 136602 (2014)

    Article  Google Scholar 

  64. A. Ferreira, T.G. Rappoport, M.A. Cazalilla, A.H. Castro Neto, Extrinsic spin Hall effect induced by resonant skew scattering in graphene. Phys. Rev. Lett. 112, 066601 (2014)

    Google Scholar 

  65. Y. Zhao et al., Creating and probing electron whispering-gallery modes in graphene. Science 348, 672–675 (2015)

    Article  Google Scholar 

  66. W.S. Bakr, J.I. Gillen, A. Peng, S. Folling, M. Greiner, A quantum gas microscope for detecting single atoms in a Hubbard-regime optical lattice. Nature 462, 74–77 (2009)

    Article  Google Scholar 

  67. Jin, D., et al., Topological magnetoplasmon (2016). arXiv:1602.00553

  68. L.I. Schiff, Quantum Mechanics, 3rd edn. (McGraw-Hill, New York, 1968)

    Google Scholar 

  69. R. Newton, Scattering Theory of Waves and Particles. Dover Books on Physics (Dover Publications, New York, 1982)

    Google Scholar 

  70. M. Lewkowicz, B. Rosenstein, Dynamics of particle-hole pair creation in graphene. Phys. Rev. Lett. 102, 106802 (2009)

    Article  Google Scholar 

  71. B. Rosenstein, M. Lewkowicz, H.-C. Kao, Y. Korniyenko, Ballistic transport in graphene beyond linear response. Phys. Rev. B 81, 041416 (2010)

    Article  Google Scholar 

  72. B. Dóra, R. Moessner, Nonlinear electric transport in graphene: quantum quench dynamics and the Schwinger mechanism. Phys. Rev. B 81, 165431 (2010)

    Google Scholar 

  73. B. Dóra, R. Moessner, Dynamics of the spin Hall effect in topological insulators and graphene. Phys. Rev. B 83, 073403 (2011)

    Google Scholar 

  74. S. Vajna, B. Dóra, R. Moessner, Nonequilibrium transport and statistics of Schwinger pair production in Weyl semimetals. Phys. Rev. B 92, 085122 (2015)

    Article  Google Scholar 

  75. C.-Z. Wang, H.-Y. Xu, L. Huang, Y.-C. Lai, Nonequilibrium transport in the pseudospin-1 Dirac-Weyl system. Phys. Rev. B 96, 115440 (2017)

    Article  Google Scholar 

  76. W. Häusler, Flat-band conductivity properties at long-range Coulomb interactions. Phys. Rev. B 91, 041102 (2015)

    Article  Google Scholar 

  77. T. Louvet, P. Delplace, A.A. Fedorenko, D. Carpentier, On the origin of minimal conductivity at a band crossing. Phys. Rev. B 92, 155116 (2015)

    Article  Google Scholar 

  78. H.-J. Stöckmann, Quantum Chaos: An Introduction (Cambridge University Press, New York, 1999)

    Book  Google Scholar 

  79. Haake, F. Quantum Signatures of Chaos, 3rd edn.. Springer Series in Synergetics (Springer, Berlin, 2010)

    Book  Google Scholar 

  80. A.H.C. Neto, K. Novoselov, Two-dimensional crystals: beyond graphene. Mater. Exp. 1, 10–17 (2011)

    Article  Google Scholar 

  81. P. Ajayan, P. Kim, K. Banerjee, Two-dimensional van der Waals materials. Phys. Today 69, 38–44 (2016)

    Article  Google Scholar 

  82. Y.-C. Lai, L. Huang, H.-Y. Xu, C. Grebogi, Relativistic quantum chaos - an emergent interdisciplinary field. Chaos 28, 052101 (2018)

    Article  MathSciNet  Google Scholar 

  83. L. Huang, H.-Y. Xu, C. Grebogi, Y.-C. Lai, Relativistic quantum chaos. Phys. Rep. 753, 1–128 (2018)

    Article  MathSciNet  Google Scholar 

  84. A. Mekis, J.U. Nöckel, G. Chen, A.D. Stone, R.K. Chang, Ray chaos and Q spoiling in lasing droplets. Phys. Rev. Lett. 75, 2682–2685 (1995)

    Article  Google Scholar 

  85. J.U. Nöckel, A.D. Stone, Ray and wave chaos in asymmetric resonant optical cavities. Nature 385, 45–47 (1997)

    Article  Google Scholar 

  86. C. Gmachl et al., High-power directional emission from microlasers with chaotic resonators. Science 280, 1556–1564 (1998)

    Article  Google Scholar 

Download references

Acknowledgments

This Review is based on Refs. [52,53,54]. I thank my former student and current post-doctoral fellow Dr. H.-Y. Xu - the main contributor of these works. I would like to acknowledge support from the Pentagon Vannevar Bush Faculty Fellowship program sponsored by the Basic Research Office of the Assistant Secretary of Defense for Research and Engineering and funded by the Office of Naval Research through Grant No. N00014-16-1-2828.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying-Cheng Lai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lai, YC. (2019). Pseudospin-1 Systems as a New Frontier for Research on Relativistic Quantum Chaos. In: In, V., Longhini, P., Palacios, A. (eds) Proceedings of the 5th International Conference on Applications in Nonlinear Dynamics. Understanding Complex Systems. Springer, Cham. https://doi.org/10.1007/978-3-030-10892-2_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-10892-2_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-10891-5

  • Online ISBN: 978-3-030-10892-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics