Skip to main content

Pericytes in the Liver

  • Chapter
  • First Online:
Pericyte Biology in Different Organs

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1122))

Abstract

Liver pericytes, commonly named hepatic stellate cells (HSCs), reside in the space between liver sinusoidal endothelial cells (LSECs) and hepatocytes. They display important roles in health and disease. HSCs ensure the storage of the majority of vitamin A in a healthy body, and they represent the major source of fibrotic tissue in liver disease. Surrounding cells, such as LSECs, hepatocytes, and Kupffer cells, present a significant role in modulating HSC behavior. Therapeutic strategies against liver disease are being currently developed, where HSCs represent an ideal target. In this chapter, we will discuss HSC quiescence and activation in the context of healthy liver and diseases, such as fibrosis, steatohepatitis, and hepatocellular carcinoma.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • (1996) Hepatic stellate cell nomenclature. Hepatology 23:193. No authors listed

    Google Scholar 

  • Amann T, Bataille F, Spruss T, Mühlbauer M, Gäbele E, Schölmerich J, Kiefer P, Bosserhoff AK, Hellerbrand C (2009) Activated hepatic stellate cells promote tumorigenicity of hepatocellular carcinoma. Cancer Sci 100(4):646–653

    Article  CAS  PubMed  Google Scholar 

  • Asahina K (2012) Hepatic stellate cell progenitor cells. J Gastroenterol Hepatol 27(Suppl 2):80–84

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Asahina K, Sato H, Yamasaki C, Kataoka M, Shiokawa M, Katayama S, Tateno C, Yoshizato K (2002) Pleiotrophin/heparin-binding growth-associated molecule as a mitogen of rat hepatocytes and its role in regeneration and development of liver. Am J Pathol 160(6):2191–2205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Asahina K, Tsai SY, Li P, Ishii M, Maxson RE Jr, Sucov HM, Tsukamoto H (2009) Mesenchymal origin of hepatic stellate cells, submesothelial cells, and perivascular mesenchymal cells during mouse liver development. Hepatology 49(3):998–1011

    Article  CAS  PubMed  Google Scholar 

  • Asahina K, Zhou B, Pu WT, Tsukamoto H (2011) Septum transversum-derived mesothelium gives rise to hepatic stellate cells and perivascular mesenchymal cells in developing mouse liver. Hepatology 53(3):983–995

    Article  CAS  PubMed  Google Scholar 

  • Azzariti A, Mancarella S, Porcelli L, Quatrale AE, Caligiuri A, Lupo L, Dituri F, Giannelli G (2016) Hepatic stellate cells induce hepatocellular carcinoma cell resistance to sorafenib through the laminin-332/α3 integrin axis recovery of focal adhesion kinase ubiquitination. Hepatology 64(6):2103–2117

    Article  CAS  PubMed  Google Scholar 

  • Beilfuss A, Sowa JP, Sydor S, Beste M, Bechmann LP, Schlattjan M, Syn WK, Wedemeyer I, Mathé Z, Jochum C, Gerken G, Gieseler RK, Canbay A (2015) Vitamin D counteracts fibrogenic TGF-β signalling in human hepatic stellate cells both receptor-dependently and independently. Gut 64(5):791–799

    Article  CAS  PubMed  Google Scholar 

  • Bilzer M, Roggel F, Gerbes AL (2006) Role of Kupffer cells in host defense and liver disease. Liver Int 26(10):1175–1186

    Article  CAS  PubMed  Google Scholar 

  • Blomhoff R, Green MH, Berg T, Norum KR (1990) Transport and storage of vitamin A. Science 250(4979):399–404

    Article  CAS  PubMed  Google Scholar 

  • Boers W, Aarrass S, Linthorst C, Pinzani M, Elferink RO, Bosma P (2006) Transcriptional profiling reveals novel markers of liver fibrogenesis: gremlin and insulin-like growth factor-binding proteins. J Biol Chem 281(24):16289–16295

    Article  CAS  PubMed  Google Scholar 

  • Brunt EM, Gouw AS, Hubscher SG, Tiniakos DG, Bedossa P, Burt AD, Callea F, Clouston AD, Dienes HP, Goodman ZD, Roberts EA, Roskams T, Terracciano L, Torbenson MS, Wanless IR (2014) Pathology of the liver sinusoids. Histopathology 64(7):907–920

    Article  PubMed  Google Scholar 

  • Byun JS, Suh YG, Yi HS, Lee YS, Jeong WI (2013) Activation of toll-like receptor 3 attenuates alcoholic liver injury by stimulating Kupffer cells and stellate cells to produce interleukin-10 in mice. J Hepatol 58(2):342–349

    Article  CAS  PubMed  Google Scholar 

  • Canbay A, Higuchi H, Bronk SF, Taniai M, Sebo TJ, Gores GJ (2002) Fas enhances fibrogenesis in the bile duct ligated mouse: a link between apoptosis and fibrosis. Gastroenterology 123(4):1323–1330

    Article  CAS  PubMed  Google Scholar 

  • Canbay A, Taimr P, Torok N, Higuchi H, Friedman S, Gores GJ (2003) Apoptotic body engulfment by a human stellate cell line is profibrogenic. Lab Investig 83(5):655–663

    Article  CAS  PubMed  Google Scholar 

  • Cassiman D, Barlow A, Vander Borght S, Libbrecht L, Pachnis V (2006) Hepatic stellate cells do not derive from the neural crest. J Hepatol 44(6):1098–1104

    Article  CAS  PubMed  Google Scholar 

  • Chen M, Liu J, Yang W, Ling W (2017) Lipopolysaccharide mediates hepatic stellate cell activation by regulating autophagy and retinoic acid signaling. Autophagy 13(11):1813–1827

    Article  PubMed  PubMed Central  Google Scholar 

  • Chou MH, Huang YH, Lin TM, Du YY, Tsai PC, Hsieh CS, Chuang JH (2012) Selective activation of toll-like receptor 7 in activated hepatic stellate cells may modulate their profibrogenic phenotype. Biochem J 447(1):25–34

    Article  CAS  PubMed  Google Scholar 

  • Dangi A, Huang C, Tandon A, Stolz D, Wu T, Gandhi CR (2016) Endotoxin-stimulated rat hepatic stellate cells induce autophagy in hepatocytes as a survival mechanism. J Cell Physiol 231(1):94–105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Das A, Shergill U, Thakur L, Sinha S, Urrutia R, Mukhopadhyay D, Shah VH (2010) Ephrin B2/EphB4 pathway in hepatic stellate cells stimulates Erk-dependent VEGF production and sinusoidal endothelial cell recruitment. Am J Physiol Gastrointest Liver Physiol 298(6):G908–G915

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ding BS, Cao Z, Lis R, Nolan DJ, Guo P, Simons M, Penfold ME, Shido K, Rabbany SY, Rafii S (2014) Divergent angiocrine signals from vascular niche balance liver regeneration and fibrosis. Nature 505(7481):97–102

    Article  PubMed  CAS  Google Scholar 

  • Dou C, Liu Z, Tu K, Zhang H, Chen C, Yaqoob U, Wang Y, Wen J, van Deursen J, Sicard D, Tschumperlin D, Zou H, Huang WC, Urrutia R, Shah VH, Kang N (2018) P300 acetyltransferase mediates stiffness-induced activation of hepatic stellate cells into tumor-promoting myofibroblasts. Gastroenterology 154(8):2209–2221.e14

    Article  CAS  PubMed  Google Scholar 

  • Drinane MC, Yaqoob U, Yu H, Luo F, Greuter T, Arab JP, Kostallari E, Verma VK, Maiers J, De Assuncao TM, Simons M, Mukhopadhyay D, Kisseleva T, Brenner DA, Urrutia R Lomberk G, Gao Y, Ligresti G, Tschumperlin DJ, Revzin A, Cao S, Shah VH. Synectin promotes fibrogenesis by regulating PDGFR isoforms through distinct mechanisms. JCI Insight. 2017;2(24). pii: 92821

    Google Scholar 

  • Duran A, Hernandez ED, Reina-Campos M, Castilla EA, Subramaniam S, Raghunandan S, Roberts LR, Kisseleva T, Karin M, Diaz-Meco MT, Moscat J (2016) p62/SQSTM1 by binding to vitamin D receptor inhibits hepatic stellate cell activity, fibrosis, and liver Cancer. Cancer Cell 30(4):595–609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ferré N, Martínez-Clemente M, López-Parra M, González-Périz A, Horrillo R, Planagumà A, Camps J, Joven J, Tres A, Guardiola F, Bataller R, Arroyo V, Clària J (2009) Increased susceptibility to exacerbated liver injury in hypercholesterolemic ApoE-deficient mice: potential involvement of oxysterols. Am J Physiol Gastrointest Liver Physiol 296(3):G553–G562

    Article  PubMed  CAS  Google Scholar 

  • Friedman SL (2008) Hepatic stellate cells: protean, multifunctional, and enigmatic cells of the liver. Physiol Rev 88(1):125–172. https://doi.org/10.1152/physrev.00013.2007

    Article  CAS  PubMed  Google Scholar 

  • Friedman S, Sanyal A, Goodman Z, Lefebvre E, Gottwald M, Fischer L, Ratziu V (2016) Efficacy and safety study of cenicriviroc for the treatment of non-alcoholic steatohepatitis in adult subjects with liver fibrosis: CENTAUR phase 2b study design. Contemp Clin Trials 47:356–365

    Article  PubMed  Google Scholar 

  • Gäbele E, Mühlbauer M, Dorn C, Weiss TS, Froh M, Schnabl B, Wiest R, Schölmerich J, Obermeier F, Hellerbrand C (2008) Role of TLR9 in hepatic stellate cells and experimental liver fibrosis. Biochem Biophys Res Commun 376(2):271–276

    Article  PubMed  CAS  Google Scholar 

  • Greuter T, Malhi H, Gores GJ, Shah VH. Therapeutic opportunities for alcoholic steatohepatitis and nonalcoholic steatohepatitis: exploiting similarities and differences in pathogenesis. JCI Insight. 2017;2(17). pii: 95354

    Google Scholar 

  • Guo J, Loke J, Zheng F, Hong F, Yea S, Fukata M, Tarocchi M, Abar OT, Huang H, Sninsky JJ, Friedman SL (2009) Functional linkage of cirrhosis-predictive single nucleotide polymorphisms of toll-like receptor 4 to hepatic stellate cell responses. Hepatology 49(3):960–968

    Article  CAS  PubMed  Google Scholar 

  • Guvendiren M, Perepelyuk M, Wells RG, Burdick JA (2014) Hydrogels with differential and patterned mechanics to study stiffness-mediated myofibroblastic differentiation of hepatic stellate cells. J Mech Behav Biomed Mater 38:198–208

    Article  CAS  PubMed  Google Scholar 

  • Hendriks HF, Verhoofstad WA, Brouwer A, de Leeuw AM, Knook DL (1985) Perisinusoidal fat-storing cells are the main vitamin A storage sites in rat liver. Exp Cell Res 160(1):138–149

    Article  CAS  PubMed  Google Scholar 

  • Huang H, Shiffman ML, Friedman S, Venkatesh R, Bzowej N, Abar OT, Rowland CM, Catanese JJ, Leong DU, Sninsky JJ, Layden TJ, Wright TL, White T, Cheung RC (2007) A 7 gene signature identifies the risk of developing cirrhosis in patients with chronic hepatitis C. Hepatology 46(2):297–306

    Article  CAS  PubMed  Google Scholar 

  • Ibrahim SH, Hirsova P, Gores GJ (2018) Non-alcoholic steatohepatitis pathogenesis: sublethal hepatocyte injury as a driver of liver inflammation. Gut 67(5):963–972

    Article  CAS  PubMed  Google Scholar 

  • Ito T, Nemoto M (1952) Kupfer's cells and fat storing cells in the capillary wall of human liver. Okajimas Folia Anat Jpn 24(4):243–258

    Article  CAS  PubMed  Google Scholar 

  • Jiang JX, Venugopal S, Serizawa N, Chen X, Scott F, Li Y, Adamson R, Devaraj S, Shah V, Gershwin ME, Friedman SL, Török NJ (2010) Reduced nicotinamide adenine dinucleotide phosphate oxidase 2 plays a key role in stellate cell activation and liver fibrogenesis in vivo. Gastroenterology 139(4):1375–1384

    Article  CAS  PubMed  Google Scholar 

  • Ju MJ, Qiu SJ, Fan J, Xiao YS, Gao Q, Zhou J, Li YW, Tang ZY (2009) Peritumoral activated hepatic stellate cells predict poor clinical outcome in hepatocellular carcinoma after curative resection. Am J Clin Pathol 131(4):498–510

    Article  CAS  PubMed  Google Scholar 

  • Kang N, Gores GJ, Shah VH (2011) Hepatic stellate cells: partners in crime for liver metastases. Hepatology 54(2):707–713

    Article  CAS  PubMed  Google Scholar 

  • Kiagiadaki F, Kampa M, Voumvouraki A, Castanas E, Kouroumalis E, Notas G (2018) Activin-a causes hepatic stellate cell activation via the induction of TNFα and TGFβ in Kupffer cells. Biochim Biophys Acta 1864(3):891–899

    Article  CAS  Google Scholar 

  • Kluwe J, Wongsiriroj N, Troeger JS, Gwak GY, Dapito DH, Pradere JP, Jiang H, Siddiqi M, Piantedosi R, O'Byrne SM, Blaner WS, Schwabe RF (2011) Absence of hepatic stellate cell retinoid lipid droplets does not enhance hepatic fibrosis but decreases hepatic carcinogenesis. Gut 60(9):1260–1268

    Article  CAS  PubMed  Google Scholar 

  • Kong B, Luyendyk JP, Tawfik O, Guo GL (2009) Farnesoid X receptor deficiency induces nonalcoholic steatohepatitis in low-density lipoprotein receptor-knockout mice fed a high-fat diet. J Pharmacol Exp Ther 328(1):116–122

    Article  CAS  PubMed  Google Scholar 

  • Kordes C, Häussinger D (2013) Hepatic stem cell niches. J Clin Invest 123(5):1874–1880

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kordes C, Sawitza I, Götze S, Herebian D, Häussinger D (2014) Hepatic stellate cells contribute to progenitor cells and liver regeneration. J Clin Invest 124(12):5503–5515

    Article  PubMed  PubMed Central  Google Scholar 

  • Kostallari E, Shah VH (2016) Angiocrine signaling in the hepatic sinusoids in health and disease. Am J Physiol Gastrointest Liver Physiol 311(2):G246–G251

    Article  PubMed  PubMed Central  Google Scholar 

  • Kostallari E, Hirsova P, Prasnicka A, Verma VK, Yaqoob U, Wongjarupong N, Roberts LR, Shah VH (2018) Hepatic stellate cell-derived PDGFRα-enriched extracellular vesicles promote liver fibrosis in mice through SHP2. Hepatology 68:333–348

    Article  CAS  PubMed  Google Scholar 

  • Kupffer CV (1876) Ueber Sternzellen der Leber. Briefliche Mitteilung an Prof. Waldeyer. Arch Mikr Anat 12:353–358

    Article  Google Scholar 

  • Lan T, Li C, Yang G, Sun Y, Zhuang L, Ou Y, Li H, Wang G, Kisseleva T, Brenner D, Guo J (2018) Sphingosine kinase 1 promotes liver fibrosis by preventing miR-19b-3p-mediated inhibition of CCR2. Hepatology 68:1070–1086

    Article  CAS  PubMed  Google Scholar 

  • Lee YS, Jeong WI (2012) Retinoic acids and hepatic stellate cells in liver disease. J Gastroenterol Hepatol 27(Suppl 2):75–79

    Article  CAS  PubMed  Google Scholar 

  • Li ZQ, Wu WR, Zhao C, Zhao C, Zhang XL, Yang Z, Pan J, Si WK (2018) CCN1/Cyr61 enhances the function of hepatic stellate cells in promoting the progression of hepatocellular carcinoma. Int J Mol Med 41(3):1518–1528

    CAS  PubMed  Google Scholar 

  • Loo CK, Wu XJ (2008) Origin of stellate cells from submesothelial cells in a developing human liver. Liver Int 28(10):1437–1445

    Article  PubMed  Google Scholar 

  • Marra F, Romanelli RG, Giannini C, Failli P, Pastacaldi S, Arrighi MC, Pinzani M, Laffi G, Montalto P, Gentilini P (1999) Monocyte chemotactic protein-1 as a chemoattractant for human hepatic stellate cells. Hepatology 29(1):140–148

    Article  CAS  PubMed  Google Scholar 

  • Mazzocca A, Coppari R, De Franco R, Cho JY, Libermann TA, Pinzani M, Toker A (2005) A secreted form of ADAM9 promotes carcinoma invasion through tumor-stromal interactions. Cancer Res 65(11):4728–4738

    Article  CAS  PubMed  Google Scholar 

  • Miura K, Yang L, van Rooijen N, Brenner DA, Ohnishi H, Seki E (2013) Toll-like receptor 2 and palmitic acid cooperatively contribute to the development of nonalcoholic steatohepatitis through inflammasome activation in mice. Hepatology 57(2):577–589

    Article  CAS  PubMed  Google Scholar 

  • Mogler C, König C, Wieland M, Runge A, Besemfelder E, Komljenovic D, Longerich T, Schirmacher P, Augustin HG (2017) Hepatic stellate cells limit hepatocellular carcinoma progression through the orphan receptor endosialin. EMBO Mol Med 9(6):741–749

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Musso O, Théret N, Campion JP, Turlin B, Milani S, Grappone C, Clément B (1997) In situ detection of matrix metalloproteinase-2 (MMP2) and the metalloproteinase inhibitor TIMP2 transcripts in human primary hepatocellular carcinoma and in liver metastasis. J Hepatol 26(3):593–605

    Article  CAS  PubMed  Google Scholar 

  • Nejak-Bowen KN, Orr AV, Bowen WC Jr, Michalopoulos GK (2013) Gliotoxin-induced changes in rat liver regeneration after partial hepatectomy. Liver Int 33(7):1044–1055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ohata M, Lin M, Satre M, Tsukamoto H (1997) Diminished retinoic acid signaling in hepatic stellate cells in cholestatic liver fibrosis. Am J Phys 272(3 Pt 1):G589–G596

    CAS  Google Scholar 

  • Okabe H, Beppu T, Hayashi H, Horino K, Masuda T, Komori H, Ishikawa S, Watanabe M, Takamori H, Iyama K, Baba H (2009) Hepatic stellate cells may relate to progression of intrahepatic cholangiocarcinoma. Ann Surg Oncol 16(9):2555–2564

    Article  PubMed  Google Scholar 

  • Patella S, Phillips DJ, Tchongue J, de Kretser DM, Sievert W (2006) Follistatin attenuates early liver fibrosis: effects on hepatic stellate cell activation and hepatocyte apoptosis. Am J Physiol Gastrointest Liver Physiol 290(1):G137–G144

    Article  CAS  PubMed  Google Scholar 

  • Pérez-Pomares JM, Carmona R, González-Iriarte M, Macías D, Guadix JA, Muñoz-Chápuli R. (2004) Contribution of mesothelium-derived cells to liver sinusoids in avian embryos. Dev Dyn. Mar;229(3):465–74

    Google Scholar 

  • Pinzani M, Milani S, De Franco R, Grappone C, Caligiuri A, Gentilini A, Tosti-Guerra C, Maggi M, Failli P, Ruocco C, Gentilini P (1996) Endothelin 1 is overexpressed in human cirrhotic liver and exerts multiple effects on activated hepatic stellate cells. Gastroenterology 110(2):534–548

    Article  CAS  PubMed  Google Scholar 

  • Popper H (1944) Distribution of vitamin A in tissue as visualized by flourescence microscopy. Physiol Rev 24:205–224

    Article  CAS  Google Scholar 

  • Povero D, Panera N, Eguchi A, Johnson CD, Papouchado BG, de Araujo Horcel L, Pinatel EM, Alisi A, Nobili V, Feldstein AE (2015) Lipid-induced hepatocyte-derived extracellular vesicles regulate hepatic stellate cell via microRNAs targeting PPAR-γ. Cell Mol Gastroenterol Hepatol 1(6):646–663.e4

    Article  PubMed  PubMed Central  Google Scholar 

  • Preziosi ME, Monga SP (2017) Update on the mechanisms of liver regeneration. Semin Liver Dis 37(2):141–151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramadori G, Rieder H, Theiss F (1989) Meyer zum Büschenfelde KH. Fat-storing (Ito) cells of rat liver synthesize and secrete apolipoproteins: comparison with hepatocytes. Gastroenterology 97(1):163–172

    Article  CAS  PubMed  Google Scholar 

  • Rangwala F, Guy CD, Lu J, Suzuki A, Burchette JL, Abdelmalek MF, Chen W, Diehl AM (2011) Increased production of sonic hedgehog by ballooned hepatocytes. J Pathol 224(3):401–410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schuppan D, Ashfaq-Khan M, Yang AT, Kim YO (2018) Liver fibrosis: direct antifibrotic agents and targeted therapies. Matrix Biol 68:435–451. pii: S0945-053X(18)30160-4

    Article  PubMed  CAS  Google Scholar 

  • Seki E, De Minicis S, Osterreicher CH, Kluwe J, Osawa Y, Brenner DA, Schwabe RF (2007) TLR4 enhances TGF-beta signaling and hepatic fibrosis. Nat Med 13(11):1324–1332

    Article  CAS  PubMed  Google Scholar 

  • Seki E, de Minicis S, Inokuchi S, Taura K, Miyai K, van Rooijen N, Schwabe RF, Brenner DA (2009) CCR2 promotes hepatic fibrosis in mice. Hepatology 50(1):185–197

    Article  CAS  PubMed  Google Scholar 

  • Semela D, Das A, Langer D, Kang N, Leof E, Shah V. (2008) Platelet-derived growth factor signaling through ephrin-b2 regulates hepatic vascular structure and function. Gastroenterology. Aug;135(2):671–9

    Google Scholar 

  • Senoo H (2004) Structure and function of hepatic stellate cells. Med Electron Microsc 37(1):3–15

    Article  CAS  PubMed  Google Scholar 

  • Shearer AM, Rana R, Austin K, Baleja JD, Nguyen N, Bohm A, Covic L, Kuliopulos A (2016) Targeting liver fibrosis with a cell-penetrating protease-activated Receptor-2 (PAR2) Pepducin. J Biol Chem 291(44):23188–23198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shimizu H, Tsubota T, Kanki K, Shiota G (2018) All-trans retinoic acid ameliorates hepatic stellate cell activation via suppression of thioredoxin interacting protein expression. J Cell Physiol 233(1):607–616

    Article  CAS  PubMed  Google Scholar 

  • Staels B, Rubenstrunk A, Noel B, Rigou G, Delataille P, Millatt LJ, Baron M, Lucas A, Tailleux A, Hum DW, Ratziu V, Cariou B, Hanf R (2013) Hepatoprotective effects of the dual peroxisome proliferator-activated receptor alpha/delta agonist, GFT505, in rodent models of nonalcoholic fatty liver disease/nonalcoholic steatohepatitis. Hepatology 58(6):1941–1952

    Article  CAS  PubMed  Google Scholar 

  • Suskind DL, Muench MO (2004) Searching for common stem cells of the hepatic and hematopoietic systems in the human fetal liver: CD34+ cytokeratin 7/8+ cells express markers for stellate cells. J Hepatol 40(2):261–268

    Article  CAS  PubMed  Google Scholar 

  • Taub R (2004) Liver regeneration: from myth to mechanism. Nat Rev Mol Cell Biol 5(10):836–847. Review

    Article  CAS  PubMed  Google Scholar 

  • Taura K, De Minicis S, Seki E, Hatano E, Iwaisako K, Osterreicher CH, Kodama Y, Miura K, Ikai I, Uemoto S, Brenner DA (2008) Hepatic stellate cells secrete angiopoietin 1 that induces angiogenesis in liver fibrosis. Gastroenterology 135(5):1729–1738

    Article  CAS  PubMed  Google Scholar 

  • Thompson KC, Trowern A, Fowell A, Marathe M, Haycock C, Arthur MJ, Sheron N (1998a) Primary rat and mouse hepatic stellate cells express the macrophage inhibitor cytokine interleukin-10 during the course of activation in vitro. Hepatology 28(6):1518–1524

    Article  CAS  PubMed  Google Scholar 

  • Thompson K, Maltby J, Fallowfield J, McAulay M, Millward-Sadler H, Sheron N (1998b) Interleukin-10 expression and function in experimental murine liver inflammation and fibrosis. Hepatology 28(6):1597–1606

    Article  CAS  PubMed  Google Scholar 

  • Toi M, Hayashi Y, Murakami I (2018) Hepatic stellate cells derived from the nestin-positive cells in septum transversum during rat liver development. Med Mol Morphol 51:199–207

    Article  CAS  PubMed  Google Scholar 

  • Tomita K, Teratani T, Suzuki T, Shimizu M, Sato H, Narimatsu K, Usui S, Furuhashi H, Kimura A, Nishiyama K, Maejima T, Okada Y, Kurihara C, Shimamura K, Ebinuma H, Saito H, Yokoyama H, Watanabe C, Komoto S, Nagao S, Sugiyama K, Aosasa S, Hatsuse K, Yamamoto J, Hibi T, Miura S, Hokari R, Kanai T (2014) Acyl-CoA:cholesterol acyltransferase 1 mediates liver fibrosis by regulating free cholesterol accumulation in hepatic stellate cells. J Hepatol 61(1):98–106

    Article  CAS  PubMed  Google Scholar 

  • Tsuchida T, Friedman SL (2017) Mechanisms of hepatic stellate cell activation. Nat Rev Gastroenterol Hepatol 14(7):397–411

    Article  CAS  PubMed  Google Scholar 

  • Van Rooyen DM, Gan LT, Yeh MM, Haigh WG, Larter CZ, Ioannou G, Teoh NC, Farrell GC (2013) Pharmacological cholesterol lowering reverses fibrotic NASH in obese, diabetic mice with metabolic syndrome. J Hepatol 59(1):144–152

    Article  PubMed  CAS  Google Scholar 

  • Vidal-Vanaclocha F (2008) The prometastatic microenvironment of the liver. Cancer Microenviron 1(1):113–129

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wake K (1971) “Sternzellen” in the liver: perisinusoidal cells with special reference to storage of vitamin A. Am J Anat 132(4):429–462

    Article  CAS  PubMed  Google Scholar 

  • Wake K (1974) Development of vitamin A-rich lipid droplets in multivesicular bodies of rat liver stellate cells. J Cell Biol 63(2 Pt 1):683–691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang R, Ding Q, Yaqoob U, de Assuncao TM, Verma VK, Hirsova P, Cao S, Mukhopadhyay D, Huebert RC, Shah VH (2015) Exosome adherence and internalization by hepatic stellate cells triggers sphingosine 1-phosphate-dependent migration. J Biol Chem 290(52):30684–30696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xia YH, Lu Z, Zhao M, Dai WT, Ding L, Hu LX, Jiang GL (2017) Tumor-specific hepatic stellate cells (tHSCs) induces DIgR2 expression in dendritic cells to inhibit T cells. Oncotarget 8(33):55084–55093

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang L, Wang Y, Mao H, Fleig S, Omenetti A, Brown KD, Sicklick JK, Li YX, Diehl AM (2008a) Sonic hedgehog is an autocrine viability factor for myofibroblastic hepatic stellate cells. J Hepatol 48(1):98–106

    Article  CAS  PubMed  Google Scholar 

  • Yang L, Jung Y, Omenetti A, Witek RP, Choi S, Vandongen HM, Huang J, Alpini GD, Diehl AM (2008b) Fate-mapping evidence that hepatic stellate cells are epithelial progenitors in adult mouse livers. Stem Cells 26(8):2104–2113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yaqoob U, Cao S, Shergill U, Jagavelu K, Geng Z, Yin M, de Assuncao TM, Cao Y, Szabolcs A, Thorgeirsson S, Schwartz M, Yang JD, Ehman R, Roberts L, Mukhopadhyay D, Shah VH (2012) Neuropilin-1 stimulates tumor growth by increasing fibronectin fibril assembly in the tumor microenvironment. Cancer Res 72(16):4047–4059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yin C, Evason KJ, Maher JJ, Stainier DY (2012) The basic helix-loop-helix transcription factor, heart and neural crest derivatives expressed transcript 2, marks hepatic stellate cells in zebrafish: analysis of stellate cell entry into the developing liver. Hepatology 56(5):1958–1970

    Article  CAS  PubMed  Google Scholar 

  • Yoneda A, Sakai-Sawada K, Niitsu Y, Tamura Y (2016) Vitamin A and insulin are required for the maintenance of hepatic stellate cell quiescence. Exp Cell Res 341(1):8–17

    Article  CAS  PubMed  Google Scholar 

  • Zaret KS (2002) Regulatory phases of early liver development: paradigms of organogenesis. Nat Rev Genet 3(7):499–512

    Article  CAS  PubMed  Google Scholar 

  • Zhao W, Zhang L, Yin Z, Su W, Ren G, Zhou C, You J, Fan J, Wang X (2011) Activated hepatic stellate cells promote hepatocellular carcinoma development in immunocompetent mice. Int J Cancer 129(11):2651–2661

    Article  CAS  PubMed  Google Scholar 

  • Zhou Z, Xu MJ, Cai Y, Wang W, Jiang JX, Varga ZV, Feng D, Pacher P, Kunos G, Torok NJ, Gao B (2018) Neutrophil-hepatic stellate cell interactions promote fibrosis in experimental steatohepatitis. Cell Mol Gastroenterol Hepatol 5(3):399–413

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhu B, Lin N, Zhang M, Zhu Y, Cheng H, Chen S, Ling Y, Pan W, Xu R (2015) Activated hepatic stellate cells promote angiogenesis via interleukin-8 in hepatocellular carcinoma. J Transl Med 13:365

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vijay H. Shah .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kostallari, E., Shah, V.H. (2019). Pericytes in the Liver. In: Birbrair, A. (eds) Pericyte Biology in Different Organs. Advances in Experimental Medicine and Biology, vol 1122. Springer, Cham. https://doi.org/10.1007/978-3-030-11093-2_9

Download citation

Publish with us

Policies and ethics