Skip to main content

Automated Profiling Method for Laser Fault Injection in FPGAs

  • Chapter
  • First Online:
Automated Methods in Cryptographic Fault Analysis

Abstract

Obtaining a knowledge of internal structure of a Field Programmable Gate Array (FPGA), together with the vulnerable spots that can be targeted by a laser fault injection, can be a time-consuming task when done manually. In this chapter, we present an automated method to identify regions of interest in an FPGA, such as logic arrays and cells. Such method identifies circuits that are implemented in FPGA and helps the attacker to determine which fault models are achievable with a given laser fault injection equipment. The chapter follows a step-by-step methodology of evaluation, starting with the chip decapsulation and preparation, followed by the characterization of the laser pulse interaction with the silicon. Later it focuses on the automated profiling itself, with a case study on Virtex-5 FPGA.

This research was conducted when the authors “J. Breier”, “W. He” and “H. G. Ong” were with Temasek Laboratories, NTU.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M. Agoyan, J.-M. Dutertre, A.-P. Mirbaha, D. Naccache, A.-L. Ribotta, A. Tria, Single-bit DFA using multiple-byte laser fault injection, in IEEE International Conference on Technologies for Homeland Security (HST), 2010 (IEEE, Piscataway, 2010), pp. 113–119

    Google Scholar 

  2. M. Alderighi, F. Casini, S. d’Angelo, M. Mancini, S. Pastore, G.R. Sechi, Evaluation of single event upset mitigation schemes for SRAM based FPGAs using the FLIPPER fault injection platform, in 22nd IEEE International Symposium on Defect and Fault-Tolerance in VLSI Systems, 2007. DFT’07 (IEEE, Piscataway, 2007), pp. 105–113

    Google Scholar 

  3. R.J. Anderson, Security Engineering: A Guide to Building Dependable Distributed Systems (Wiley, Hoboken, 2010)

    Google Scholar 

  4. N. Bagheri, R. Ebrahimpour, N. Ghaedi, New differential fault analysis on present. EURASIP J. Adv. Signal Process. 2013(1), 145 (2013)

    Google Scholar 

  5. N. Bagheri, N. Ghaedi, S.K. Sanadhya, Differential fault analysis of SHA-3, in Progress in Cryptology–INDOCRYPT 2015 (Springer, Cham, 2015), pp. 253–269

    MATH  Google Scholar 

  6. J. Beutler, Visible light LVP on bulk silicon devices, in 41st International Symposium for Testing and Failure Analysis (November 1–5, 2015) (Asm, Novelty, 2015), pp. 1–8

    Google Scholar 

  7. A. Bogdanov, L.R. Knudsen, G. Leander, C. Paar, A. Poschmann, M.J. Robshaw, Y. Seurin, C. Vikkelsoe, PRESENT: an ultra-lightweight block cipher, in Proceedings of the 9th International Workshop on Cryptographic Hardware and Embedded Systems, CHES ‘07 (Springer, Berlin, 2007), pp. 450–466

    MATH  Google Scholar 

  8. D. Boneh, R.A. DeMillo, R.J. Lipton, On the importance of eliminating errors in cryptographic computations. J. Cryptol. 14(2), 101–119 (2001)

    Article  MathSciNet  Google Scholar 

  9. J. Breier, D. Jap, Testing feasibility of back-side laser fault injection on a microcontroller, in Proceedings of the WESS’15: Workshop on Embedded Systems Security (ACM, New York, 2015), p. 5

    Google Scholar 

  10. S.P. Buchner, F. Miller, V. Pouget, D.P. McMorrow, Pulsed-laser testing for single-event effect investigations. IEEE Trans. Nucl. Sci. 60(3), 1852–1875 (2013)

    Article  Google Scholar 

  11. G. Canivet, P. Maistri, R. Leveugle, J. Clédière, F. Valette, M. Renaudin, Glitch and laser fault attacks onto a secure AES implementation on a SRAM-based FPGA. J. Cryptol. 24(2), 247–268 (2011)

    Article  Google Scholar 

  12. F. Courbon, P. Loubet-Moundi, J.J.A. Fournier, A. Tria, Adjusting laser injections for fully controlled faults, in International Workshop on Constructive Side-Channel Analysis and Secure Design (Springer, Cham, 2014), pp. 229–242

    Google Scholar 

  13. N.T. Courtois, K. Jackson, D. Ware, Fault-algebraic attacks on inner rounds of DES, in e-Smart’10 Proceedings: The Future of Digital Security Technologies (Strategies Telecom and Multimedia, Montreuil, 2010)

    Google Scholar 

  14. J.-M. Dutertre, A.-P. Mirbaha, D. Naccache, A. Triaz, Reproducible single-byte laser fault injection, in Conference on Ph.D. Research in Microelectronics and Electronics (PRIME), 2010 (IEEE, Piscataway, 2010), pp. 1–4

    Google Scholar 

  15. W. He, A. Otero, E. de la Torre, T. Riesgo, Customized and automated routing repair toolset towards side-channel analysis resistant dual rail logic. Microprocess. Microsyst. 38(8), 899–910 (2014)

    Article  Google Scholar 

  16. F.L. Kastensmidt, L. Tambara, D.V. Bobrovsky, A.A. Pechenkin, A.Y. Nikiforov, Laser testing methodology for diagnosing diverse soft errors in a nanoscale SRAM-based FPGA. IEEE Trans. Nucl. Sci. 61(6), 3130–3137 (2014)

    Article  Google Scholar 

  17. P. Kocher, J. Jaffe, B. Jun, Differential power analysis, in Annual International Cryptology Conference (Springer, Berlin, 1999), pp. 388–397

    MATH  Google Scholar 

  18. H. Lohrke, P. Scholz, C. Boit, S. Tajik, J.-P. Seifert, Automated detection of fault sensitive locations for reconfiguration attacks on programmable logic, in Proceedings of the 42nd International Symposium for Testing and Failure Analysis (ASM, Washington, 2016), pp. 1–6

    Google Scholar 

  19. A. Moradi, V. Immler, Early propagation and imbalanced routing, how to diminish in FPGAS, in Cryptographic Hardware and Embedded Systems–CHES 2014 (Springer, Berlin, 2014), pp. 598–615

    MATH  Google Scholar 

  20. J.C.H. Phang, D.S.H. Chan, M. Palaniappan, J.M. Chin, B. Davis, M. Bruce, J. Wilcox, G. Gilfeather, C.M. Chua, L.S. Koh, H.Y. Ng, S.H. Tan, A review of laser induced techniques for microelectronic failure analysis, in Proceedings of the 11th International Symposium on the Physical and Failure Analysis of Integrated Circuits. IPFA 2004, July (2004), pp. 255–261

    Google Scholar 

  21. V. Pouget, A. Douin, D. Lewis, P. Fouillat, G. Foucard, P. Peronnard, V. Maingot, J. Ferron, L. Anghel, R. Leveugle, R. Velazco, Tools and methodology development for pulsed laser fault injection in SRAM-based FPGAs, in 8th LATW’07, (IEEE Computer Society, Piscataway, 2007)

    Google Scholar 

  22. C. Roscian, J.-M. Dutertre, A. Tria, Frontside laser fault injection on cryptosystems-application to the AES’last round, in IEEE International Symposium on Hardware-Oriented Security and Trust (HOST), 2013 (IEEE, Piscataway, 2013), pp. 119–124

    Google Scholar 

  23. C. Roscian, A. Sarafianos, J.-M. Dutertre, A. Tria, Fault model analysis of laser-induced faults in SRAM memory cells, in Workshop on Fault Diagnosis and Tolerance in Cryptography (FDTC), 2013 (IEEE, Piscataway, 2013), pp. 89–98

    Google Scholar 

  24. N. Selmane, S. Bhasin, S. Guilley, T. Graba, J.-L. Danger, WDDL is protected against setup time violation attacks, in Workshop on Fault Diagnosis and Tolerance in Cryptography (FDTC), 2009 (IEEE, Piscataway, 2009), pp. 73–83

    Book  Google Scholar 

  25. B. Selmke, S. Brummer, J. Heyszl, G. Sigl, Precise laser fault injections into 90 nm and 45 nm SRAM-cells, in International Conference on Smart Card Research and Advanced Applications (Springer, Cham, 2015), pp. 193–205

    Google Scholar 

  26. P. Swierczynski, G.T. Becker, A. Moradi, C. Paar, Bitstream fault injections (BIFI) – automated fault attacks against SRAM-based FPGAS. IEEE Trans. Comput. PP(99), 1–14 (2017)

    Google Scholar 

  27. S. Tajik, H. Lohrke, F. Ganji, J.P. Seifert, C. Boit, Laser fault attack on physically unclonable functions, in 2015 Workshop on Fault Diagnosis and Tolerance in Cryptography (FDTC), September (2015), pp. 85–96

    Google Scholar 

  28. M. Tunstall, D. Mukhopadhyay, S. Ali, Differential fault analysis of the advanced encryption standard using a single fault, in IFIP International Workshop on Information Security Theory and Practices (Springer, Berlin, 2011), pp. 224–233

    Google Scholar 

  29. K. Wu, R. Karri, G. Kuznetsov, M. Goessel, Low cost concurrent error detection for the advanced encryption standard, in Proceedings 2004 International Test Conference, ITC 2004 (IEEE, Piscataway, 2004), pp. 1242–1248

    Google Scholar 

  30. F. Zhang, S. Guo, X. Zhao, T. Wang, J. Yang, F.-X. Standaert, D. Gu, A framework for the analysis and evaluation of algebraic fault attacks on lightweight block ciphers. IEEE Trans. Inf. Forensics Secur. 11(5), 1039–1054 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jakub Breier .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Breier, J. et al. (2019). Automated Profiling Method for Laser Fault Injection in FPGAs. In: Breier, J., Hou, X., Bhasin, S. (eds) Automated Methods in Cryptographic Fault Analysis. Springer, Cham. https://doi.org/10.1007/978-3-030-11333-9_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-11333-9_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-11332-2

  • Online ISBN: 978-3-030-11333-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics