Skip to main content

Abstract

The lung changes dramatically throughout in utero life and continues to develop well into childhood. Though the process of fetal development is continuous, the development of the lung can be subdivided into five morphologic stages: embryonic, pseudoglandular, canalicular, saccular, and alveolar. This chapter reviews the histologic characteristics of the lung in each of these stages.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. dePaepe M. Lung growth and development. In: Churg AM, Myers JL, Tazelaar HD, Wright JL, editors. Thurlbeck’s pathology of the lung. 3rd ed. New York: Thieme; 2005. p. 39–71.

    Google Scholar 

  2. Colby TV, Leslie KO, Yousem SA. Lungs. In: Mills S, editor. Histology for pathologists. 3rd ed. Philadelphia: Lippincott Williams & Wilkins; 2007.

    Google Scholar 

  3. Langston C. Prenatal lung growth and pulmonary hypoplasia. In: Stocker JT, editor. Pediatric pulmonary disease. New York: Hemisphere; 1989. p. 1–13.

    Google Scholar 

  4. Kimura J, Deutsch GH. Key mechanisms of early lung development. Pediatr Dev Pathol. 2007;10:335–47.

    Article  CAS  Google Scholar 

  5. O’Rahilly R, Müller F. Human embryology and teratology. 3rd ed. New York: Wiley-Liss; 2001.

    Google Scholar 

  6. Valdés-Dapena MA. The lower respiratory tract. Histology of the fetus and newborn. Philadelphia: WB Saunders; 1979. p. 309–41.

    Google Scholar 

  7. Hislop A. Developmental biology of the pulmonary circulation. Paediatr Respir Rev. 2005;6:35–43.

    Article  Google Scholar 

  8. Wigglesworth J. Perinatal pathology. Philadelphia: WB Saunders; 1996.

    Google Scholar 

  9. Haworth SG, Hislop AA. Pulmonary vascular development: normal values of peripheral vascular structure. Am J Cardiol. 1983;52:578–83.

    Article  CAS  Google Scholar 

  10. Hislop A, Reid L. Pulmonary arterial development during childhood: branching pattern and structure. Thorax. 1973;28:129–35.

    Article  CAS  Google Scholar 

  11. McNellis EM, Mabry SM, Taboada E, Ekekezie II. Altered pulmonary lymphatic development in infants with chronic lung disease. Biomed Res Int. 2014;2014:109891.

    Article  Google Scholar 

  12. Gould SJ, Isaacson PG. Bronchus-associated lymphoid tissue (BALT) in human fetal and infant lung. J Pathol. 1993;169:229–34.

    Article  CAS  Google Scholar 

  13. Ersch J, Tschernig T, Stallmach T. Frequency and potential cause of bronchus-associated lymphoid tissue in fetal lungs. Pediatr Allergy Immunol. 2005;16:295–8.

    Article  Google Scholar 

  14. Barter R. The histopathology of congenital pneumonia: a clinical and experimental study. J Pathol Bacteriol. 1953;66:407–15.

    Article  CAS  Google Scholar 

  15. Tschernig T, Kleemann WJ, Pabst R. Bronchus-associated lymphoid tissue (BALT) in the lungs of children who had died from sudden infant death syndrome and other causes. Thorax. 1995;50:658–60.

    Article  CAS  Google Scholar 

  16. Watanabe H. Pathological studies of neuroendocrine cells in human embryonic and fetal lung. Light microscopical, immunohistochemical and electron microscopical approaches. Acta Pathol Jpn. 1988;38:59–74.

    CAS  PubMed  Google Scholar 

  17. Johnson DE, Kulik TJ, Lock JE, Elde RP, Thompson TR. Bombesin-, calcitonin-, and serotonin-immunoreactive pulmonary neuroendocrine cells in acute and chronic neonatal lung disease. Pediatr Pulmonol. 1985;1:S13–20.

    CAS  PubMed  Google Scholar 

  18. Kresch MJ, Christian C, Wu F, Hussain N. Ontogeny of apoptosis during lung development. Pediatr Res. 1998;43:426–31.

    Article  CAS  Google Scholar 

  19. Scavo LM, Ertsey R, Chapin CJ, Allen L, Kitterman JA. Apoptosis in the development of rat and human fetal lungs. Am J Respir Cell Mol Biol. 1998;18:21–31.

    Article  CAS  Google Scholar 

  20. Emery JL, Mithal A. The number of alveoli in the terminal respiratory unit of man during late intrauterine life and childhood. Arch Dis Child. 1960;35:544–7.

    Article  CAS  Google Scholar 

  21. Cooney TP, Thurlbeck WM. The radial alveolar count method of Emery and Mithal: a reappraisal. 2 – intrauterine and early postnatal lung growth. Thorax. 1982;37:580–3.

    Article  CAS  Google Scholar 

  22. Cooney TP, Thurlbeck WM. The radial alveolar count method of Emery and Mithal: a reappraisal. 1 – postnatal lung growth. Thorax. 1982;37:572–9.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jennifer E. Pogoriler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kreiger, P.A., Pogoriler, J.E. (2019). Lung. In: Ernst, L., Ruchelli, E., Carreon, C., Huff, D. (eds) Color Atlas of Human Fetal and Neonatal Histology. Springer, Cham. https://doi.org/10.1007/978-3-030-11425-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-11425-1_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-11424-4

  • Online ISBN: 978-3-030-11425-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics