Skip to main content

A Product Formula for the Normalized Volume of Free Sums of Lattice Polytopes

  • Conference paper
  • First Online:
Advances in Algebra (SRAC 2017)

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 277))

Included in the following conference series:

Abstract

The free sum is a basic geometric operation among convex polytopes. This note focuses on the relationship between the normalized volume of the free sum and that of the summands. In particular, we show that the normalized volume of the free sum of full-dimensional polytopes is precisely the product of the normalized volumes of the summands.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    An alternative definition for mixed volume is the coefficient of \(\lambda _1, \ldots , \lambda _n\) in the above polynomial divided by n!.

References

  1. Alilooee, A., Soprunov, I., Validashti, J.: Generalized multiplicities of edge ideals. J. Algebraic Comb. 1–32 (2016)

    Google Scholar 

  2. Batyrev, V.V.: Dual polyhedra and mirror symmetry for Calabi-Yau hypersurfaces in toric varieties. J. Algebraic Geom. 3, 493–535 (1994)

    Google Scholar 

  3. Beck, M., Jayawant, P., McAllister, T.B.: Lattice-point generating functions for free sums of convex sets. J. Comb. Theory Ser. A 120, 1246–1262 (2013). https://doi.org/10.1016/j.jcta.2013.03.007, http://www.sciencedirect.com/science/article/pii/S0097316513000599

    Article  MathSciNet  Google Scholar 

  4. Beck, M., Robins, S.: Computing the Continuous Discretely. Undergraduate Texts in Mathematics. Springer, New York (2007)

    Google Scholar 

  5. Bernshtein, D.N.: The number of roots of a system of equations. Funct. Anal. Appl. 9, 183–185 (1975)

    Article  MathSciNet  Google Scholar 

  6. Bihan, F., Soprunov, I.: Criteria for strict monotonicity of the mixed volume of convex polytopes (2017). arXiv:1702.07676 [math], http://arxiv.org/abs/1702.07676.pdf

  7. Braun, B.: An Ehrhart series formula for reflexive polytopes. Electron. J. Combin. 13(15), 5 pp. (electronic) (2006)

    Google Scholar 

  8. Braun, B.: Unimodality Problems in Ehrhart Theory, pp. 687–711. Springer International Publishing, Cham (2016). https://doi.org/10.1007/978-3-319-24298-9_27

    Chapter  Google Scholar 

  9. Braun, B., Davis, R., Solus, L.: Detecting the integer decomposition property and Ehrhart unimodality in reflexive simplices (2016). http://arxiv.org/abs/1608.01614

  10. Chen, T.: Unmixing the mixed volume computation (2017). arXiv:1703.01684 [math], http://arxiv.org/abs/1703.01684

  11. Conrads, H.: Weighted projective spaces and reflexive simplices. Manuscripta Math. 107, 215–227 (2002). https://doi.org/10.1007/s002290100235

    Article  MathSciNet  Google Scholar 

  12. Ehrhart, E.: Sur les polyèdres rationnels homothétiques à \(n\) dimensions. C. R. Acad. Sci. Paris 254, 616–618 (1962)

    Google Scholar 

  13. Haase, C., Melnikov, I.V.: The reflexive dimension of a lattice polytope. Ann. Comb. 10, 211–217 (2006)

    Article  MathSciNet  Google Scholar 

  14. Hartshorne, R.: Algebraic Geometry, no. 52. Springer (1977)

    Book  Google Scholar 

  15. Hibi, T.: Ehrhart polynomials of convex polytopes, \(h\)-vectors of simplicial complexes, and nonsingular projective toric varieties. In: Discrete and Computational Geometry: Papers from the DIMACS Special Year, vol. 6, pp. 165–177 (1991)

    Google Scholar 

  16. Hibi, T.: Algebraic Combinatorics on Convex Polytopes. Carslaw Publications, Australia (1992)

    MATH  Google Scholar 

  17. Khovanskii, A.G.: Newton polyhedra and the genus of complete intersections. Funct. Anal. Appl. 12, 38–46 (1978). https://doi.org/10.1007/BF01077562

    Article  MathSciNet  Google Scholar 

  18. Kreuzer, M., Skarke, H.: Classification of reflexive polyhedra in three dimensions. Adv. Theor. Math. Phys. 2, 853–871 (1998)

    Article  MathSciNet  Google Scholar 

  19. Kushnirenko, A.G.: A Newton polyhedron and the number of solutions of a system of k equations in k unknowns. Usp. Math. Nauk 30, 266–267 (1975)

    Google Scholar 

  20. Kushnirenko, A.G.: Newton polytopes and the Bezout theorem. Funct. Anal. Appl. 10, 233–235 (1976). https://doi.org/10.1007/BF01075534, https://link.springer.com/article/10.1007/BF01075534

    Article  Google Scholar 

  21. McAllister, T.: Private Communication (2018)

    Google Scholar 

  22. Minkowski, H.: Theorie der konvexen Korper, insbesondere Begrundung ihres Oberflachenbegriffs. Gesammelte Abhandlungen von Hermann Minkowski 2, 131–229 (1911)

    Google Scholar 

  23. Payne, S.: Ehrhart series and lattice triangulations. Discrete Comput. Geom. 40, 365–376 (2008)

    Article  MathSciNet  Google Scholar 

  24. Stanley, R.P.: Decompositions of rational convex polytopes. Ann. Discrete Math. 6, 333–342 (1980); Combinatorial mathematics, optimal designs and their applications. In: Proceedings of the Symposium of Combinatorial Mathematics, Optimal Designs, Colorado State University, Fort Collins, Colorado (1978)

    Google Scholar 

  25. Stapledon, A.: Counting lattice points in free sums of polytopes. J. Comb. Theory Ser. A (2017). To appear

    Google Scholar 

  26. Sturmfels, B.: Gröbner Bases and Convex Polytopes. University Lecture Series, vol. 8. American Mathematical Society, Providence, RI (1996)

    Google Scholar 

  27. Ziegler, G.M.: Lectures on Polytopes. Graduate Texts in Mathematics, vol. 152. Springer-Verlag, New York (1995)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tianran Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chen, T., Davis, R. (2019). A Product Formula for the Normalized Volume of Free Sums of Lattice Polytopes. In: Feldvoss, J., Grimley, L., Lewis, D., Pavelescu, A., Pillen, C. (eds) Advances in Algebra. SRAC 2017. Springer Proceedings in Mathematics & Statistics, vol 277. Springer, Cham. https://doi.org/10.1007/978-3-030-11521-0_6

Download citation

Publish with us

Policies and ethics