Skip to main content

Abstract

Biomimetic model membranes were inspired by natural cell membrane and are rapidly progressing in the field for varied applications, especially for drug screening studies. Biomimetic lipid membranes such as lipid monolayer, lipid vesicles, and supported lipid membranes have been constructed to investigate the cell membrane and membrane protein interaction with various drugs. Also, biomimetic lipid membranes provide an experimental platform to understand disease at the molecular level, which is also an important step for developing new therapeutic agents. This chapter covers biomimetic model membrane types utilized to screen drug–membrane and drug–receptor interactions, characterization techniques, and an overview of recent work in the field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J. K. Seydel, M. A. Velasco, E. A. Coats, H. P. Cordes, B. Kunz, M. Wiese, The importance of drug-membrane interaction in drug research and development. Quantative Structure-Activity Relatioships, 11(2), 205–210 (1992)

    Google Scholar 

  2. A. S. Chiranjeevi Peetla, V. Labhasetwar, Biophysical interactions with model lipid membranes: applications in drug discovery and drug delivery. Mol. Pharm. 6, 1264–1276 (2009)

    Article  CAS  Google Scholar 

  3. R. Pignatello, T. Musumeci, L. Basile, C. Carbone, G. Puglisi, Biomembrane models and drug-biomembrane interaction studies: Involvement in drug design and development. J. Pharm. Bioallied Sci. 3(1), 4–14 (2011)

    Article  CAS  Google Scholar 

  4. C. Bernsdorff, R. Reszka, R. Winter, Interaction of the anticancer agent Taxol (TM) (paclitaxel) with phospholipid bilayers. J. Biomed. Mater. Res. 46(2), 141–149 (1999)

    Article  CAS  Google Scholar 

  5. L. Panicker, V. Sugandhi, K.P. Mishra, Interaction of keratolytic drug, salicylic acid with dipalmitoyl phosphatidylethanolamine vesicles. Phase Transit. 81(4), 361–378 (2008)

    Article  CAS  Google Scholar 

  6. A. Preetha, N. Huilgol, R. Banerjee, Effect of fluidizing agents on paclitaxel penetration in cervical cancerous monolayer membranes. J. Membr. Biol. 219(1–3), 83–91 (2007)

    Article  CAS  Google Scholar 

  7. A. Berquand, N. Fa, Y.F. Dufrêne, M.P. Mingeot-Leclercq, Interaction of the macrolide antibiotic azithromycin with lipid bilayers: effect on membrane organization, fluidity, and permeability. Pharm. Res. 22(3), 465–475 (2005)

    Article  CAS  Google Scholar 

  8. M. Pinheiro, C. Nunes, J.M. Caio, C. Moiteiro, M. Lucio, G. Brezesinski, S. Reis, The influence of rifabutin on human and bacterial membrane models: implications for its mechanism of action. J. Phys. Chem. B 117(20), 6187–6193 (2013)

    Article  CAS  Google Scholar 

  9. D. Nieciecka, A. Królikowska, P. Krysinski, Probing the interactions of mitoxantrone with biomimetic membranes with electrochemical and spectroscopic techniques. Electrochim. Acta 165, 430–442 (2015)

    Article  CAS  Google Scholar 

  10. O. Domenech, G. Francius, P.M. Tulkens, F. Van Bambeke, Y. Dufrene, M.P. Mingeot-Leclercq, Interactions of oritavancin, a new lipoglycopeptide derived from vancomycin, with phospholipid bilayers: effect on membrane permeability and nanoscale lipid membrane organization. Biochim. Biophys. Acta 1788(9), 1832–1840 (2009)

    Article  CAS  Google Scholar 

  11. I. Alves, G. Staneva, C. Tessier, G.F. Salgado, P. Nuss, The interaction of antipsychotic drugs with lipids and subsequent lipid reorganization investigated using biophysical methods. Biochim. Biophys. Acta 1808(8), 2009–2018 (2011)

    Article  CAS  Google Scholar 

  12. P. Kuhn, K. Eyer, S. Allner, D. Lombardi, P.S. Dittrich, A microfluidic vesicle screening platform: monitoring the lipid membrane permeability of tetracyclines. Anal. Chem. 83(23), 8877–8885 (2011)

    Article  CAS  Google Scholar 

  13. N.K. Khadka, X. Cheng, C.S. Ho, J. Katsaras, J. Pan, Interactions of the anticancer drug tamoxifen with lipid membranes. Biophys. J. 108(10), 2492–2501 (2015)

    Article  CAS  Google Scholar 

  14. A. Arslan Yildiz, C. Kang, E.K. Sinner, Biomimetic membrane platform containing hERG potassium channel and its application to drug screening. Analyst 138(7), 2007–2012 (2013a)

    Article  CAS  Google Scholar 

  15. B. Le Pioufle, H. Suzuki, K.V. Tabata, H. Noji, S. Takeuchi, Lipid bilayer microarray for parallel recording of transmembrane ion currents. Anal. Chem. 80, 328–332 (2008)

    Article  CAS  Google Scholar 

  16. E.K. Schmitt, M. Vrouenraets, C. Steinem, Channel activity of OmpF monitored in nano-BLMs. Biophys. J. 91(6), 2163–2171 (2006)

    Article  CAS  Google Scholar 

  17. S. Damiati, S. Zayni, A. Schrems, E. Kiene, U.B. Sleytr, J. Chopineau, B. Schuster, E.K. Sinner, Inspired and stabilized by nature: ribosomal synthesis of the human voltage gated ion channel (VDAC) into 2D-protein-tethered lipid interfaces. Biomater. Sci. 3(10), 1406–1413 (2015)

    Article  CAS  Google Scholar 

  18. R. Syeda, M.A. Holden, W.L. Hwang, H. Bayley, Screening blockers against a potassium channel with a droplet interface bilayer array. J. Am. Chem. Soc. 130, 15543–15548 (2008)

    Article  CAS  Google Scholar 

  19. A.A. Yildiz, W. Knoll, R.B. Gennis, E.K. Sinner, Cell-free synthesis of cytochrome bo(3) ubiquinol oxidase in artificial membranes. Anal. Biochem. 423(1), 39–45 (2012)

    Article  CAS  Google Scholar 

  20. T.H. Bayburt, A.J. Leitz, G. Xie, D.D. Oprian, S.G. Sligar, Transducin activation by nanoscale lipid bilayers containing one and two rhodopsins. J. Biol. Chem. 282(20), 14875–14881 (2007)

    Article  CAS  Google Scholar 

  21. T.H. Bayburt, S.G. Sligar, Self-assembly of single integral membrane proteins into soluble nanoscale phospholipid bilayers. Protein Sci. 12(11), 2476–2481 (2003)

    Article  CAS  Google Scholar 

  22. A.Z. Kijac, Y. Li, S.G. Sligar, C.M. Rienstra, Magic-angle spinning solid-state NMR spectroscopy of nanodisc-embedded human CYP3A4. Biochemistry 46, 13696–13703 (2007)

    Article  CAS  Google Scholar 

  23. T. Boldog, S. Grimme, M. Li, S.G. Sligar, G.L. Hazelbauer, Nanodiscs separate chemoreceptor oligomeric states and reveal their signaling properties. PNAS 103, 11509–11514 (2006)

    Article  CAS  Google Scholar 

  24. K. Dalal, N. Nguyen, M. Alami, J. Tan, T.F. Moraes, W.C. Lee, R. Maurus, S.S. Sligar, G.D. Brayer, F. Duong, Structure, binding, and activity of Syd, a SecY-interacting protein. J. Biol. Chem. 284(12), 7897–7902 (2009)

    Article  CAS  Google Scholar 

  25. Y. Gao, E. Cao, D. Julius, Y. Cheng, TRPV1 structures in nanodiscs reveal mechanisms of ligand and lipid action. Nature 534(7607), 347–351 (2016)

    Article  CAS  Google Scholar 

  26. J.H. Wade, J.D. Jones, I.L. Lenov, C.M. Riordan, S.G. Sligar, R.C. Bailey, Microfluidic platform for efficient Nanodisc assembly, membrane protein incorporation, and purification. Lab. Chip. 17(17), 2951–2959 (2017)

    Article  CAS  Google Scholar 

  27. P.B. Bennett, H.R. Guthrie, Trends in ion channel drug discovery: advances in screening technologies. Trends Biotechnol. 21(12), 563–569 (2003)

    Article  CAS  Google Scholar 

  28. Y.H. Ye Fang, B. Webb, J. Lahiri, Applications of biomembranes in drug discovery. MRS Bull. 31, 541–545 (2006)

    Article  Google Scholar 

  29. N.S. Schonenbach, S. Hussain, M.A. O'Malley, Structure and function of G protein-coupled receptor oligomers: implications for drug discovery. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 7(3), 408–427 (2015)

    Article  CAS  Google Scholar 

  30. J.M. Karasinska, S.R. George, B.F. O’Dowd, Family 1 G protein-coupled receptor function in the CNS. Insights from gene knockout mice. Brain Res. Brain Res. Rev. 41(2–3), 125–152 (2003)

    Article  CAS  Google Scholar 

  31. P.R. Gorry, P. Ancuta, Coreceptors and HIV-1 pathogenesis. Curr. HIV/AIDS Rep. 8(1), 45–53 (2011)

    Article  Google Scholar 

  32. I. Palmisano, P. Bagnato, A. Palmigiano, G. Innamorati, G. Rotondo, D. Altimare, C. Venturi, E.V. Sviderskaya, R. Piccirillo, M. Coppola, V. Marigo, B. Incerti, A. Ballabio, E.M. Surace, C. Tacchetti, D.C. Bennett, M.V. Schiaffino, The ocular albinism type 1 protein, an intracellular G protein-coupled receptor, regulates melanosome transport in pigment cells. Hum. Mol. Genet. 17(22), 3487–3501 (2008)

    Article  CAS  Google Scholar 

  33. J.P. Overington, B. Al-Lazikani, A.L. Hopkins, How many drug targets are there? Nat. Rev. Drug Discov. 5(12), 993–996 (2006)

    Article  CAS  Google Scholar 

  34. A. Mullard, 2013 FDA drug approvals. Nat. Rev. Drug Discov. 13(2), 85–89 (2014)

    Article  CAS  Google Scholar 

  35. J.M. Ford, W.N. Hait, Pharmacology of drugs that alter multidrug resistance in cancer. Pharmacol. Rev. 42(3), 155–199 (1990)

    CAS  Google Scholar 

  36. J. Pallares-Trujillo, F.J. Lopez-Soriano, J.M. Argiles, Lipids: a key role in multidrug resistance? (review). Int. J. Oncol. 16, 783–798 (2000)

    CAS  Google Scholar 

  37. P. Cohen, Protein kinases – the major drug target of twenty century. Nat. Rev. Drug Discov. 1(4), 309–315 (2002)

    Article  CAS  Google Scholar 

  38. N.V. Koudinova, A. Kontush, T.T. Berezov, A.R. Koudinov, Amyloid beta, neurallipids, cholesterol& Alzheimer’s disease. Neurobiol. Lipids. 1(6), 27–33 (2003)

    Google Scholar 

  39. N.B. Chauhan, Membrane dynamics, cholesterol homeostasis, and Alzheimer’s disease. J. Lipid Res. 44(11), 2019–2029 (2003)

    Article  CAS  Google Scholar 

  40. Y. Verdier, M. Zarandi, B. Penke, Amyloid beta-peptide interactions with neuronal and glial cell plasma membrane: binding sites and implications for Alzheimer's disease. J. Pept. Sci. 10(5), 229–248 (2004)

    Article  CAS  Google Scholar 

  41. J.M. Alakoskela, P. Vitovic, P.K. Kinnunen, Screening for the drug-phospholipid interaction: correlation to phospholipidosis. ChemMedChem 4(8), 1224–1251 (2009)

    Article  CAS  Google Scholar 

  42. I.G. Denisov, S.G. Sligar, Nanodiscs for structural and functional studies of membrane proteins. Nat. Struct. Mol. Biol. 23(6), 481–486 (2016)

    Article  CAS  Google Scholar 

  43. C.-Y. Hsia, M.J. Richards, S. Daniel, A review of traditional and emerging methods to characterize lipid–protein interactions in biological membranes. Anal. Methods 7(17), 7076–7094 (2015)

    Article  CAS  Google Scholar 

  44. M.D. Marc Eeman, From biological membranes to biomimetic model. Biotechnol. Agron. Soc. Environ. 14(4), 719–736 (2010)

    Google Scholar 

  45. J. Knobloch, D.K. Suhendro, J.L. Zieleniecki, J.G. Shapter, I. Koper, Membrane-drug interactions studied using model membrane systems. Saudi J. Biol. Sci. 22(6), 714–718 (2015)

    Article  CAS  Google Scholar 

  46. M. Lúcio, J.L. F, C. L, S. Reis, Drug-membrane interactions significance for medicinal chemistry. Curr. Med. Chem. 17, 1795–1809 (2010)

    Article  Google Scholar 

  47. H. Brockman, Lipid monolayers why use half a membrane to characterize. Curr. Opin. Struct. Biol. 9, 438–443 (1999)

    Article  CAS  Google Scholar 

  48. A.C. Alves, D. Ribeiro, C. Nunes, S. Reis, Biophysics in cancer: the relevance of drug-membrane interaction studies. Biochim. Biophys. Acta 1858(9), 2231–2244 (2016)

    Article  CAS  Google Scholar 

  49. V. Rosilio, How Can Artificial Lipid Models Mimic the Complexity of Molecule–Membrane Interactions?. Advances in Biomembranes and Lipid Self-Assembly, Elsevier, 27, 107–146 (2018)

    Google Scholar 

  50. M. Deleu, J.M. Crowet, M.N. Nasir, L. Lins, Complementary biophysical tools to investigate lipid specificity in the interaction between bioactive molecules and the plasma membrane: a review. Biochim. Biophys. Acta 1838(12), 3171–3190 (2014)

    Article  CAS  Google Scholar 

  51. Y.H. Chan, S.G. Boxer, Model membrane systems and their applications. Curr. Opin. Chem. Biol. 11(6), 581–587 (2007)

    Article  CAS  Google Scholar 

  52. A. Kilic, F.N. Kok, Biomimetic lipid bilayers on solid surfaces: models for biological interactions. Surf.Innov. 4(3), 141–157 (2016)

    Article  Google Scholar 

  53. H.T.T. Amma Wardak, Cyclic voltammetry studies of bilayer lipid membrane ranes deposited on platinum by self assembly. Bioelectrochem. Bioenerg. 24, 1–11 (1990)

    Article  Google Scholar 

  54. R. Guidelli, G. Aloisi, L. Becucci, A. Dolfi, M.R. Moncelli, F.T. Buoninsegni, Bioelectrochemistry at metal/water interfaces. J. Electroanal. Chem. 504, 1–28 (2001)

    Article  CAS  Google Scholar 

  55. A. Arslan Yildiz, U.H. Yildiz, B. Liedberg, E.K. Sinner, Biomimetic membrane platform: fabrication, characterization and applications. Colloids Surf. B Biointerfaces 103, 510–516 (2013b)

    Article  CAS  Google Scholar 

  56. V. Atanasov, P.P. Atanasova, I.K. Vockenroth, N. Knorr, I. Köper, A molecular toolkit for highly insulating tethered bilayer lipid membranes on various substrates. Bioconjug. Chem. 17, 631–637 (2006)

    Article  CAS  Google Scholar 

  57. T. Yu, G. Zhou, X. Hu, S. Ye, Transport and organization of cholesterol in a planar solid-supported lipid bilayer depend on the phospholipid flip-flop rate. Langmuir 32(44), 11681–11689 (2016)

    Article  CAS  Google Scholar 

  58. J.P. Michel, Y.X. Wang, I. Kiesel, Y. Gerelli, V. Rosilio, Disruption of asymmetric lipid bilayer models mimicking the outer membrane of gram-negative Bacteria by an active Plasticin. Langmuir 33(41), 11028–11039 (2017)

    Article  CAS  Google Scholar 

  59. D. Zhang, M. Pekkanen-Mattila, M. Shahsavani, A. Falk, A.I. Teixeira, A. Herland, A 3D Alzheimer’s disease culture model and the induction of P21-activated kinase mediated sensing in iPSC derived neurons. Biomaterials 35(5), 1420–1428 (2014)

    Article  CAS  Google Scholar 

  60. I.G. Denisov, S.G. Sligar, Nanodiscs in membrane biochemistry and biophysics. Chem. Rev. 117(6), 4669–4713 (2017)

    Article  CAS  Google Scholar 

  61. A. Nath, W.M. Atkins, S.G. Sligar, Applications of phospholipid bilayer nanodiscs in the study of membranes and membrane proteins. Biochemistry 46, 2056–2067 (2007)

    Article  CAS  Google Scholar 

  62. T.K. Ritchie, Y.V. Grinkova, T.H. Bayburt, I.G. Denisov, J.K. Zolnerciks, W.M. Atkins, S.G. Sligar, Reconstitution of membrane proteins in phospholipid bilayer nanodiscs. Meth. Enzymol. 464(Liposomes, Part F), 211–231 (2009)

    Article  CAS  Google Scholar 

  63. J.M. Gluck, B.W. Koenig, D. Willbold, Nanodiscs allow the use of integral membrane proteins as analytes in surface plasmon resonance studies. Anal. Biochem. 408(1), 46–52 (2011)

    Article  CAS  Google Scholar 

  64. C. Roos, L. Kai, D. Proverbio, U. Ghoshdastider, S. Filipek, V. Dotsch, F. Bernhard, Co-translational association of cell-free expressed membrane proteins with supplied lipid bilayers. Mol. Membr. Biol. 30(1), 75–89 (2013)

    Article  Google Scholar 

  65. S.G. Rasmussen, H.J. Choi, J.J. Fung, E. Pardon, P. Casarosa, P.S. Chae, B.T. Devree, D.M. Rosenbaum, F.S. Thian, T.S. Kobilka, A. Schnapp, I. Konetzki, R.K. Sunahara, S.H. Gellman, A. Pautsch, J. Steyaert, W.I. Weis, B.K. Kobilka, Structure of a nanobody-stabilized active state of the beta(2) adrenoceptor. Nature 469(7329), 175–180 (2011)

    Article  CAS  Google Scholar 

  66. A. Obergrussberger, S. Stolzle-Feix, N. Becker, A. Bruggemann, N. Fertig, C. Moller, Novel screening techniques for ion channel targeting drugs. Channels (Austin) 9(6), 367–375 (2015)

    Article  Google Scholar 

  67. N. Fertig, R.H. Blick, J.C. Behrends, Whole cell patch clamp recording performed on a planar glass chip. Biophys. J. 82, 3056–3062 (2002)

    Article  CAS  Google Scholar 

  68. A.E. Dubin, N. Nasser, J. Rohrbacher, A.N. Hermans, R. Marrannes, C. Grantham, K. Van Rossem, M. Cik, S.R. Chaplan, D. Gallacher, J. Xu, A. Guia, N.G. Byrne, C. Mathes, Identifying modulators of hERG channel activity using the PatchXpress planar patch clamp. J. Biomol. Screen. 10(2), 168–181 (2005)

    Article  CAS  Google Scholar 

  69. Z.L. Mo, T. Faxel, Y.S. Yang, R. Gallavan, D. Messing, A. Bahinski, Effect of compound plate composition on measurement of hERG current IC(50) using PatchXpress. J. Pharmacol. Toxicol. Methods 60(1), 39–44 (2009)

    Article  CAS  Google Scholar 

  70. H. Tao, D.S. Ana, A. Guia, M. Huang, J. Ligutti, G. Walker, K. Sithiphong, F. Chan, T. Guoliang, Z. Zozulya, S. Saya, R. Phimmachack, C. Sie, J. Yuan, L. Wu, J. Xu, A. Ghetti, Automated tight seal electrophysiology for assessing the potential hERG liability of pharmaceutical compounds. Assay Drug Dev. Technol. 2(5), 497–506 (2004)

    Article  CAS  Google Scholar 

  71. J. Kutchinsky, S. Friis, M. Asmild, R. Taboryski, S. Pedersen, R.K. Vestergaard, R.B. Jacobsen, K. Krzywkowski, R.L. Schrøder, T. Ljungstrøm, N. Hélix, C.B. Sørensen, M. Bech, N.J. Willumsen, Characterization of Potassium Channel modulators with QPatch automated patch-clamp technology: system characteristics and performance. Assay Drug Dev. Technol. 1, 685–693 (2003)

    Article  CAS  Google Scholar 

  72. R.L. Schroder, S. Friis, M. Sunesen, C. Mathes, N.J. Willumsen, Automated patch-clamp technique: increased throughput in functional characterization and in pharmacological screening of small-conductance Ca2+ release-activated Ca2+ channels. J. Biomol. Screen. 13(7), 638–647 (2008)

    Article  CAS  Google Scholar 

  73. J. Pihl, J. Sinclair, E. Sahlin, M. Karlsson, F. Petterson, J. Olofsson, O. Orwar*, Microfluidic gradient-generating device for pharmalogical profiling. Anal. Chem. 77, 3897–3903 (2005)

    Article  CAS  Google Scholar 

  74. M.R. Nussio, M.J. Sykes, J.O. Miners, J.G. Shapter, Characterisation of the binding of cationic amphiphilic drugs to phospholipid bilayers using surface plasmon resonance. ChemMedChem 2(3), 366–373 (2007)

    Article  CAS  Google Scholar 

  75. A. Das, J. Zhao, G.C. Schatz, S.G. Sligar, R.P.V. Duyne, Screening of type I and II drug binding to human cytochrome P450-3A4 in Nanodiscs by localized surface Plasmon resonance spectroscopy. Anal. Chem. 81, 3754–3759 (2009)

    Article  CAS  Google Scholar 

  76. A. Watts, Solid-state NMR in drug design and discovery for membrane-embedded targets. Nat. Rev. Drug Discov. 4(7), 555–568 (2005)

    Article  CAS  Google Scholar 

  77. J.C. Debouzy, L. Mehenni, D. Crouzier, M. Lahiani-Skiba, G. Nugue, M. Skiba, NMR and ESR study of amphotericin B interactions with various binary phosphatidylcholine/phosphatidylglycerol membranes. Int. J. Pharm. 521(1–2), 384–394 (2017)

    Article  CAS  Google Scholar 

  78. J. Casas, M. Ibarguren, R. Alvarez, S. Teres, V. Llado, S.P. Piotto, S. Concilio, X. Busquets, D.J. Lopez, P.V. Escriba, G protein-membrane interactions II: effect of G protein-linked lipids on membrane structure and G protein-membrane interactions. Biochim. Biophys. Acta 1859(9 Pt B), 1526–1535 (2017)

    Article  CAS  Google Scholar 

  79. S. Morandat, S. Azouzi, E. Beauvais, A. Mastouri, K. El Kirat, Atomic force microscopy of model lipid membranes. Anal. Bioanal. Chem. 405(5), 1445–1461 (2013)

    Article  CAS  Google Scholar 

  80. J.A.N. Zasadzinski, C.A. Helm, M.L. Longo, A.L. Weisenhorn, S.A.C. Gould, P.K. Hansmat, Atomic force microscopy of hydrated phosphatidylethanolamine bilayers. Biophys. J. 59, 755–760 (1991)

    Article  CAS  Google Scholar 

  81. S. Merino, O. Domenech, I. Diez, F. Sanz, M. Vinas, M.T. Montero, J. Hernandez-Borrell, Effects of ciprofloxacin on Escherichia colilipid bilayers: an atomic force microscopy. Langmuir 19, 6922–6927 (2003)

    Article  CAS  Google Scholar 

  82. J. Mou, J. Yang, Z. Shao, Atomic force microscopy of cholera toxin B-oligomers bound to bilayers of biologically relevant lipids. J. Mol. Biol. 248, 507–512 (1995)

    Article  CAS  Google Scholar 

  83. M.P. Mingeot-Leclercq, M. Deleu, R. Brasseur, Y.F. Dufrene, Atomic force microscopy of supported lipid bilayers. Nat. Protoc. 3(10), 1654–1659 (2008)

    Article  Google Scholar 

  84. G.S. Lorite, T.M. Nobre, M.E. Zaniquelli, E. de Paula, M.A. Cotta, Dibucaine effects on structural and elastic properties of lipid bilayers. Biophys. Chem. 139(2–3), 75–83 (2009)

    Article  CAS  Google Scholar 

  85. A.-S. Andersson, K. Glasmästar, D. Sutherland, U. Lidberg, B. Kasemo, Cell adhesion on supported lipid bilayers. J. Biomed. Mater. Res. A 64A(4), 622–629 (2003)

    Article  CAS  Google Scholar 

  86. E. Reimhult, K. Kumar, Membrane biosensor platforms using nano- and microporous supports. Trends Biotechnol. 26(2), 82–89 (2008)

    Article  CAS  Google Scholar 

  87. H. Benamara, C. Rihouey, T. Jouenne, S. Alexandre, Impact of the biofilm mode of growth on the inner membrane phospholipid composition and lipid domains in Pseudomonas aeruginosa. Biochim. Biophys. Acta Biomembr. 1808(1), 98–105 (2011)

    Article  CAS  Google Scholar 

  88. T.M. Nobre, F.J. Pavinatto, L. Caseli, A. Barros-Timmons, P. Dynarowicz-Łątka, O.N. Oliveir, Interactions of bioactive molecules & nanomaterials with Langmuir monolayers as cell membrane models. Thin Solid Films 593, 158–188 (2015)

    Google Scholar 

  89. C. Peetla, R. Bhave, S. Vijayaraghavalu, A. Stine, E. Kooijman, V. Labhasetwar, Drug resistance in breast cancer cells: biophysical characterization of and doxorubucin interactions with membrane lipids. Mol. Pharm. 7(6), 2334–2348 (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahu Arslan Yildiz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bilginer, R., Arslan Yildiz, A. (2019). Biomimetic Model Membranes as Drug Screening Platform. In: Kök, F., Arslan Yildiz, A., Inci, F. (eds) Biomimetic Lipid Membranes: Fundamentals, Applications, and Commercialization. Springer, Cham. https://doi.org/10.1007/978-3-030-11596-8_10

Download citation

Publish with us

Policies and ethics