Skip to main content

Computational Modelling of the Vibrational Characteristics of Zero-Dimensional Nanoscopic Structures

  • Chapter
  • First Online:
Computational Continuum Mechanics of Nanoscopic Structures

Abstract

Insight into the vibrational characteristics of zero-dimensional nanoscopic structures is of fundamental interest, since it can be used to predict their geometrical and material properties. Zero-dimensional nanoscopic structures are nano-sized particles with all their three dimensions restricted to a few tens of nanometers. Investigation of these nanoscopic structures has prompted a growing research endeavour in diverse fields including nanolubrication, nanomanufacturing, nanocoatings and nanocomposites (Guo, Xie and Luo, J. Phys. D: Appl. Phys. 47, 013001 (2014)). In this chapter, we consider the nonlocal vibration analysis of zero-dimensional nanoscopic structures. An overview of the current literature discussing the vibration characteristics of zero-dimensional nanoscopic structures is presented first. We then discuss the application of the nonlocal models to the investigation of the vibration properties of the spherical fullerene molecules and nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. D. Guo, G. Xie, J. Luo, Mechanical properties of nanoparticles: basics and applications. J. Phys. D: Appl. Phys. 47, 013001 (2014)

    Article  Google Scholar 

  2. S.A. Fazelzadeh, E. Ghavanloo, Coupled axisymmetric vibration of nonlocal fluid-filled closed spherical membrane shell. Acta Mech. 223, 2011–2020 (2012)

    Article  MathSciNet  Google Scholar 

  3. E. Ghavanloo, S.A. Fazelzadeh, Nonlocal elasticity theory for radial vibration of nanoscale spherical shells. Eur. J. Mech. A Solids 41, 37–42 (2013)

    Article  MathSciNet  Google Scholar 

  4. R.E. Stanton, M.D. Newton, Normal vibrational modes of Buckminsterfullerene. J. Phys. Chem. 92, 2141–2145 (1988)

    Article  Google Scholar 

  5. L.T. Chadderton, Axisymmetric vibrational modes of fullerene C\(_{60}\). J. Phys. Chem. Solids 54, 1027–1033 (1993)

    Article  Google Scholar 

  6. S. Adhikari, R. Chowdhury, Vibration spectra of fullerene family. Phys. Lett. A 375, 2166–2170 (2011)

    Article  Google Scholar 

  7. J.H. Lee, B.S. Lee, F.T.K. Au, J. Zhang, Y. Zeng, Vibrational and dynamic analysis of C\(_{60}\) and C\(_{30}\) fullerenes using FEM. Comput. Mater. Sci. 56, 131–140 (2012)

    Article  Google Scholar 

  8. H. Nejat Pishkenari, P. Ghaf Ghanbari, Vibrational analysis of the fullerene family using Tersoff potential. Curr. Appl. Phys. 17, 72–77 (2017)

    Article  Google Scholar 

  9. E. Ghavanloo, S.A. Fazelzadeh, H. Rafii-Tabar, A computational modeling of Raman radial breathing-like mode frequencies of fullerene encapsulated inside single-walled carbon nanotubes. J. Mol. Model. 23, 48 (2017)

    Article  Google Scholar 

  10. R. Zaera, J. Fernández-Sáez, J.A. Loya, Axisymmetric free vibration of closed thin spherical nano-shell. Compos. Struct. 104, 154–161 (2013)

    Article  Google Scholar 

  11. E. Ghavanloo, S.A. Fazelzadeh, Nonlocal shell model for predicting axisymmetric vibration of spherical shell-like nanostructures. Mech. Adv. Mater. Struct. 22, 597–603 (2015)

    Article  Google Scholar 

  12. J. Vila, R. Zaera, J. Fernández-Sáez, Axisymmetric free vibration of closed thin spherical nanoshells with bending effects. J. Vib. Control 22, 3789–3806 (2016)

    Article  MathSciNet  Google Scholar 

  13. H. Guo, L. He, B. Xing, Applications of surface-enhanced Raman spectroscopy in the analysis of nanoparticles in the environment. Environ. Sci. Nano 4, 2093–2107 (2017)

    Article  Google Scholar 

  14. A. Crut, P. Maioli, N. Del Fatti, F. Vallee, Time-domain investigation of the acoustic vibrations of metal nanoparticles: size and encapsulation effects. Ultrasonics 56, 98–108 (2015)

    Article  Google Scholar 

  15. E. Ghavanloo, S.A. Fazelzadeh, H. Rafii-Tabar, Analysis of radial breathing-mode of nanostructures with various morphologies: a critical review. Int. Mater. Rev. 60, 312–329 (2015)

    Article  Google Scholar 

  16. H. Lamb, On the vibrations of a spherical shell. Proc. Lond. Math. Soc. s1–14, 50–56 (1882)

    Article  MathSciNet  Google Scholar 

  17. D.B. Murray, L. Saviot, Acoustic vibrations of embedded spherical nanoparticles. Phys. E 26, 417–421 (2005)

    Article  Google Scholar 

  18. V. Mankad, S.K. Gupta, P.K. Jha, N.N. Ovsyuk, G.A. Kachurin, Low-frequency Raman scattering from Si/Ge nanocrystals in different matrixes caused by acoustic phonon quantization. J. Appl. Phys. 112, 054318 (2012)

    Article  Google Scholar 

  19. J. Wang, Y. Gao, M.Y. Ng, Y.C. Chang, Radial vibration of ultra-small nanoparticles with surface effects. J. Phys. Chem. Solids 85, 287–292 (2015)

    Article  Google Scholar 

  20. E. Ghavanloo, S.A. Fazelzadeh, Radial vibration of free anisotropic nanoparticles based on nonlocal continuum mechanics. Nanotechnology 24, 075702 (2013)

    Article  Google Scholar 

  21. S.A. Fazelzadeh, E. Ghavanloo, Radial vibration characteristics of spherical nanoparticles immersed in fluid medium. Modern Phys. Lett. B 27, 1350186 (2013)

    Article  Google Scholar 

  22. E. Ghavanloo, S.A. Fazelzadeh, T. Murmu, S. Adhikari, Radial breathing-mode frequency of elastically confined spherical nanoparticles subjected to circumferential magnetic field. Phys. E 66, 228–233 (2015)

    Article  Google Scholar 

  23. E. Ghavanloo, A. Abbasszadehrad, Frequency domain analysis of nano-objects subject to periodic external excitation. Iran. J. Sci. Technol. Trans. Mech. Eng. (2018). https://doi.org/10.1007/s40997-018-0178-5

  24. H. Rafii-Tabar, E. Ghavanloo, S.A. Fazelzadeh, Nonlocal continuum-based modeling of mechanical characteristics of nanoscopic structures. Phys. Rep. 638, 1–97 (2016)

    Article  MathSciNet  Google Scholar 

  25. M. Todt, F.G. Rammerstorfer, F.D. Fischer, P.H. Mayrhofer, D. Holec, M.A. Hartmann, Continuum modeling of van der Waals interactions between carbon onion layers. Carbon 49, 1620–1627 (2011)

    Article  Google Scholar 

  26. D. Kahn, K.W. Kim, M.A. Stroscio, Quantized vibrational modes of nanospheres and nanotubes in the elastic continuum model. J. Appl. Phys. 89, 5107–5111 (2001)

    Article  Google Scholar 

  27. E. Ghavanloo, S.A. Fazelzadeh, Oscillations of spherical fullerenes interacting with graphene sheet. Phys. B 504, 47–51 (2017)

    Article  Google Scholar 

  28. A. Vassallo, L. Pang, P. Coleclarke, M. Wilson, Emission FTIR study of C\(_{60}\) thermal stability and oxidation. J. Am. Chem. Soc. 113, 7820–7821 (1991)

    Article  Google Scholar 

  29. R.A. Jishi, R.M. Mirie, M.S. Dresselhaus, Force-constant model for the vibrational modes in C\(_{60}\). Phys. Rev. B 45, 13685–13689 (1992)

    Article  Google Scholar 

  30. H. Nejat Pishkenari, P. Ghaf Ghanbari, Vibrational properties of C\(_{60}\): a comparison among different inter-atomic potentials, Comput. Mater. Sci. 122, 38–45 (2016)

    Google Scholar 

  31. C.R. Wylie, L.C. Barrett, Advanced Engineering Mathematics (McGraw-Hill, New York, 1995)

    Google Scholar 

  32. J.R. Neighbovrs, G.A. Alers, Elastic constants of silver and gold. Phys. Rev. 111, 707–712 (1958)

    Article  Google Scholar 

  33. V. Mankad, K.K. Mishra, S.K. Gupta, T.R. Ravindran, P.K. Jha, Low frequency Raman scattering from confined acoustic phonons in freestanding silver nanoparticles. Vib. Spectrosc. 61, 183–187 (2012)

    Article  Google Scholar 

  34. V. Mankad, P.K. Jha, T.R. Ravindran, Probing confined acoustic phonons in free standing small gold nanoparticles. J. Appl. Phys. 113, 074303 (2013)

    Article  Google Scholar 

  35. A.C. Eringen, On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves. J. Appl. Phys. 54, 4703–4710 (1983)

    Article  Google Scholar 

  36. K.S. Al-Basyouni, S.R. Mahmoud, E.O. Alzahrani, Effect of rotation, magnetic field and aperiodic loading on radial vibrations thermo-viscoelastic non-homogeneous media. Bound. Value Probl. 2014, 166 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Esmaeal Ghavanloo .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ghavanloo, E., Rafii-Tabar, H., Fazelzadeh, S.A. (2019). Computational Modelling of the Vibrational Characteristics of Zero-Dimensional Nanoscopic Structures. In: Computational Continuum Mechanics of Nanoscopic Structures. Springer Tracts in Mechanical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-030-11650-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-11650-7_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-11649-1

  • Online ISBN: 978-3-030-11650-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics