Skip to main content

On the Chaotic Pole of Attraction with Nonlocal and Nonsingular Operators in Neurobiology

  • Chapter
  • First Online:
Fractional Derivatives with Mittag-Leffler Kernel

Part of the book series: Studies in Systems, Decision and Control ((SSDC,volume 194))

  • 706 Accesses

Abstract

Until the neurologists J.L. Hindmarsh and R.M. Rose improved the Hodgkin–Huxley model to provide a better understanding on the diversity of neural response, features like pole of attraction unfolding complex bifurcation for the membrane potential was still a mystery. This work explores the possible existence of chaotic poles of attraction in the dynamics of Hindmarsh–Rose neurons with external current input. Combining with fractional differentiation, the model is generalized with introduction of an additional parameter, the non-integer order of the derivative \(\sigma \) and solved numerically thanks to the Haar Wavelets. Numerical simulations of the membrane potential dynamic show that in the standard case the control parameter is \(\sigma =1,\) the nerve cell’s behavior seems irregular with a pole of attraction generating a limit cycle. This irregularity accentuates as \(\sigma \) decreases (\(\sigma =0.8\) and \(\sigma =0.5\)) with the pole of attraction becoming chaotic.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Department of Biochemistry and Molecular Biophysics, Jessell, T., Siegelbaum, S., Hudspeth, A.J.: Principles of Neural Science. Kandel, E.R., Schwartz, J.H., Jessell, T.M. (eds.), vol. 4, pp. 1227–1246. McGraw-hill, New York (2000)

    Google Scholar 

  2. Logothetis, N.K., Pauls, J., Augath, M., Trinath, T., Oeltermann, A.: Neurophysiological investigation of the basis of the fMRI signal. Nature 412(6843), 150–157 (2001)

    Article  Google Scholar 

  3. Ren, H.P., Bai, C., Baptista, M.S., Grebogi, C.: Weak connections form an infinite number of patterns in the brain. Sci. Rep. 7, 1–12 (2017)

    Article  Google Scholar 

  4. Rizzolatti, G., Craighero, L.: The mirror-neuron system. Annu. Rev. Neurosci. 27, 169–192 (2004)

    Article  Google Scholar 

  5. Thompson, R.F., Spencer, W.A.: Habituation: a model phenomenon for the study of neuronal substrates of behavior. Psychol. Rev. 73(1), 1–16 (1966)

    Article  Google Scholar 

  6. Misiaszek, J.E.: The H-reflex as a tool in neurophysiology: its limitations and uses in understanding nervous system function. Muscle Nerve 28(2), 144–160 (2003)

    Article  Google Scholar 

  7. Hodgkin, A., Huxley, A.: A quantitative description of membrane current and its application to conduction and excitation in nerve. Bull. Math. Biol. 52(1–2), 25–71 (1990)

    Article  Google Scholar 

  8. Hodgkin, A.L., Huxley, A.F.: A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. 117(4), 500–544 (1952)

    Article  Google Scholar 

  9. Hindmarsh, J., Rose, R.: A model of the nerve impulse using two first-order differential equations. Nature 296(5853), 162–164 (1982)

    Article  Google Scholar 

  10. Yamada, Y., Kashimori, Y.: Neural mechanism of dynamic responses of neurons in inferior temporal cortex in face perception. Cogn. Neurodynamics 7(1), 23–38 (2013)

    Article  Google Scholar 

  11. Barrio, R., Angeles Martínez, M., Serrano, S., Shilnikov, A.: Macro-and micro-chaotic structures in the Hindmarsh-Rose model of bursting neurons. Chaos: Interdiscip. J. Nonlinear Sci. 24(2), 1–11 (2014)

    MathSciNet  MATH  Google Scholar 

  12. Hindmarsh, J.L., Rose, R.: A model of neuronal bursting using three coupled first order differential equations. Proc. R. Soc. Lond. B: Biol. Sci. 221(1222), 87–102 (1984)

    Article  Google Scholar 

  13. Jun, D., Guang-jun, Z., Yong, X., Hong, Y., Jue, W.: Dynamic behavior analysis of fractional-order Hindmarsh-Rose neuronal model. Cogn. Neurodynamics 8(2), 167–175 (2014)

    Article  Google Scholar 

  14. Che, Y.-Q., Wang, J., Tsang, K.-M., Chan, W.-L.: Unidirectional synchronization for Hindmarsh-Rose neurons via robust adaptive sliding mode control. Nonlinear Anal. R. World Appl. 11(2), 1096–1104 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  15. Ostojic, S., Brunel, N., Hakim, V.: Synchronization properties of networks of electrically coupled neurons in the presence of noise and heterogeneities. J. Comput. Neurosci. 26(3), 1–24 (2009)

    Article  MathSciNet  Google Scholar 

  16. Storace, M., Linaro, D., de Lange, E.: The Hindmarsh–Rose neuron model: bifurcation analysis and piecewise-linear approximations. Chaos: Interdiscip. J. Nonlinear Sci. 18(3), 1–10 (2008)

    Article  MathSciNet  Google Scholar 

  17. Caputo, M.: Linear models of dissipation whose Q is almost frequency independent-II. Geophys. J. Int. 13(5), 529–539 (1967)

    Article  Google Scholar 

  18. Doungmo Goufo, E.F., Atangana, A.: Analytical and numerical schemes for a derivative with filtering property and no singular kernel with applications to diffusion. Eur. Phys. J. Plus 131(8), 1–26 (2016)

    Article  Google Scholar 

  19. Doungmo Goufo, E.F.: Chaotic processes using the two-parameter derivative with non-singular and nonlocal kernel: basic theory and applications. Chaos: Interdiscip. J. Nonlinear Sci. 26(8), 1–21 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  20. Atangana, A., Baleanu, D.: New fractional derivatives with non-local and non-singular kernel. Therm. Sci. 20(2), 763–769 (2016)

    Article  Google Scholar 

  21. Gómez-Aguilar, J.F.: Analytical and numerical solutions of a nonlinear alcoholism model via variable-order fractional differential equations. Phys. A: Stat. Mech. Its Appl. 494, 52–75 (2018)

    Article  MathSciNet  Google Scholar 

  22. Atangana, A., Gómez-Aguilar, J.F.: Decolonisation of fractional calculus rules: breaking commutativity and associativity to capture more natural phenomena. Eur. Phys. J. Plus 133, 1–22 (2018)

    Article  Google Scholar 

  23. Atangana, A.: Non validity of index law in fractional calculus: a fractional differential operator with markovian and non-markovian properties. Phys. A: Stat. Mech. Its Appl. 505, 688–706 (2018)

    Article  MathSciNet  Google Scholar 

  24. Atangana, A., Nieto, J.: Numerical solution for the model of RLC circuit via the fractional derivative without singular kernel. Adv. Mech. Eng. 7(10), 1–7 (2015)

    Article  Google Scholar 

  25. Morales-Delgado, V.F., Taneco-Hernández, M.A., Gómez-Aguilar, J.F.: On the solutions of fractional order of evolution equations. Eur. Phys. J. Plus 132(1), 1–17 (2017)

    Article  Google Scholar 

  26. Gómez-Aguilar, J.F., Escobar-Jiménez, R.F., López-López, M.G., Alvarado-Martínez, V.M.: Atangana-Baleanu fractional derivative applied to electromagnetic waves in dielectric media. J. Electromagn. Waves Appl. 30(15), 1937–1952 (2016)

    Article  Google Scholar 

  27. Brockmann, D., Hufnagel, L.: Front propagation in reaction-superdiffusion dynamics: taming Lévy flights with fluctuations. Phys. Rev. Lett. 98(17), 178–301 (2007)

    Article  Google Scholar 

  28. Doungmo Goufo, E.F.: Speeding up chaos and limit cycles in evolutionary language and learning processes. Math. Methods Appl. Sci. 40(8), 3055–3065 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  29. Doungmo Goufo, E.F.: Application of the Caputo-Fabrizio fractional derivative without singular kernel to Korteweg-de Vries-Bergers equation. Math. Model. Anal. 21(2), 188–198 (2016)

    Article  MathSciNet  Google Scholar 

  30. Das, S.: Convergence of Riemann-Liouville and caputo derivative definitions for practical solution of fractional order differential equation. Int. J. Appl. Math. Stat. 23(D11), 64–74 (2011)

    MathSciNet  Google Scholar 

  31. Doungmo Goufo, E.F.: Solvability of chaotic fractional systems with 3D four-scroll attractors. Chaos Solitons Fractals 104, 443–451 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  32. Hilfer, R.: Application of Fractional Calculus in Physics. World Scientific, Singapore (1999)

    Google Scholar 

  33. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier Science Limited (2006)

    Google Scholar 

  34. Coronel-Escamilla, A., Torres, F., Gómez-Aguilar, J.F., Escobar-Jiménez, R.F., Guerrero-Ramírez, G.V.: On the trajectory tracking control for an SCARA robot manipulator in a fractional model driven by induction motors with PSO tuning. Multibody Syst. Dyn. 43(3), 257–277 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  35. Yépez-Martínez, H., Gómez-Aguilar, J.F.: A new modified definition of Caputo-Fabrizio fractional-order derivative and their applications to the multi step homotopy analysis method (MHAM). J. Comput. Appl. Math. 346, 247–260 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  36. Gómez-Aguilar, J.F., Yépez-Martínez, H., Escobar-Jiménez, R.F., Astorga-Zaragoza, C.M., Reyes-Reyes, J.: Analytical and numerical solutions of electrical circuits described by fractional derivatives. Appl. Math. Model. 40(21–22), 9079–9094 (2016)

    Article  MathSciNet  Google Scholar 

  37. Rosales, J., Guía, M., Gómez, F., Aguilar, F., Martínez, J.: Two dimensional fractional projectile motion in a resisting medium. Open Phys. 12(7), 517–520 (2014)

    Article  Google Scholar 

  38. Gómez-Aguilar, J.F., Yépez-Martínez, H., Escobar-Jiménez, R.F., Astorga-Zaragoza, C.M., Morales-Mendoza, L.J., González-Lee, M.: Universal character of the fractional space-time electromagnetic waves in dielectric media. J. Electromagn. Waves Appl. 29(6), 727–740 (2015)

    Article  Google Scholar 

  39. Coronel-Escamilla, A., Gómez-Aguilar, J.F., Alvarado-Méndez, E., Guerrero-Ramírez, G.V., Escobar-Jiménez, R.F.: Fractional dynamics of charged particles in magnetic fields. Int. J. Mod. Phys. C 27(08), 1–16 (2016)

    Article  MathSciNet  Google Scholar 

  40. Babolian, E., Shahsavaran, A.: Numerical solution of nonlinear fredholm integral equations of the second kind using haar wavelets. J. Comput. Appl. Math. 225(1), 87–95 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  41. Chen, Y., Yi, M., Yu, C.: Error analysis for numerical solution of fractional differential equation by Haar wavelets method. J. Comput. Sci. 3(5), 367–373 (2012)

    Article  Google Scholar 

  42. Lepik, Ü., Hein, H.: Haar Wavelets: With Applications. Springer Science & Business Media (2014)

    Google Scholar 

  43. Tonelli, L.: Sullintegrazione per parti. Rend. Acc. Naz. Lincei 5(18), 246–253 (1909)

    MATH  Google Scholar 

  44. Fubini, G.: Opere scelte II. Cremonese, Roma (1958)

    MATH  Google Scholar 

  45. Morales-Delgado, V.F., Gómez-Aguilar, J.F., Kumar, S., Taneco-Hernández, M.A.: Analytical solutions of the Keller-Segel chemotaxis model involving fractional operators without singular kernel. Eur. Phys. J. Plus 133(5), 1–26 (2018)

    Google Scholar 

  46. Coronel-Escamilla, A., Gómez-Aguilar, J.F., Baleanu, D., Córdova-Fraga, T., Escobar-Jiménez, R.F., Olivares-Peregrino, V.H., Qurashi, MMAl: Bateman-Feshbach tikochinsky and Caldirola–Kanai oscillators with new fractional differentiation. Entropy 19(2), 1–21 (2017)

    Article  Google Scholar 

  47. Cuahutenango-Barro, B., Taneco-Hernández, M.A., Gómez-Aguilar, J.F.: On the solutions of fractional-time wave equation with memory effect involving operators with regular kernel. Chaos Solitons Fractals 115, 283–299 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  48. Doungmo Goufo, E.F., Nieto, J.J.: Attractors for fractional differential problems of transition to turbulent flows. J. Comput. Appl. Math. 339, 329–342 (2017)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The work of EF Doungmo Goufo was partially supported by the grant No: 105932 from the National Research Foundation (NRF) of South Africa.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emile F. Doungmo Goufo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Doungmo Goufo, E.F., Atangana, A., Khumalo, M. (2019). On the Chaotic Pole of Attraction with Nonlocal and Nonsingular Operators in Neurobiology. In: Gómez, J., Torres, L., Escobar, R. (eds) Fractional Derivatives with Mittag-Leffler Kernel. Studies in Systems, Decision and Control, vol 194. Springer, Cham. https://doi.org/10.1007/978-3-030-11662-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-11662-0_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-11661-3

  • Online ISBN: 978-3-030-11662-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics