Skip to main content

Multiconfigurational Approach to X-ray Spectroscopy of Transition Metal Complexes

  • Chapter
  • First Online:
Transition Metals in Coordination Environments

Abstract

Close correlation between theoretical modeling and experimental spectroscopy allows for identification of the electronic and geometric structure of a system through its spectral fingerprint. This is can be used to verify mechanistic proposals and is a valuable complement to calculations of reaction mechanisms using the total energy as the main criterion. For transition metal systems, X-ray spectroscopy offers a unique probe because the core-excitation energies are element specific, which makes it possible to focus on the catalytic metal. The core hole is atom-centered and sensitive to the local changes in the electronic structure, making it useful for redox active catalysts. The possibility to do time-resolved experiments also allows for rapid detection of metastable intermediates. Reliable fingerprinting requires a theoretical model that is accurate enough to distinguish between different species and multiconfigurational wavefunction approaches have recently been extended to model a number of X-ray processes of transition metal complexes. Compared to ground-state calculations, modeling of X-ray spectra is complicated by the presence of the core hole, which typically leads to multiple open shells and large effects of spin–orbit coupling. This chapter describes how these effects can be accounted for with a multiconfigurational approach and outline the basic principles and performance. It is also shown how a detailed analysis of experimental spectra can be used to extract additional information about the electronic structure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ågren H, Jensen HJA (1987) An efficient method for the calculation of generalized overlap amplitudes for core photoelectron shake-up spectra. Chem Phys Lett 137(5):431–436

    Google Scholar 

  2. Ågren H, Flores-Riveros A, Jensen HJA (1989) An efficient method for calculating molecular radiative intensities in the vuv and soft x-ray wavelength regions. Phys Scr 40(6):745

    Google Scholar 

  3. Andersson K, Malmqvist PÅ, Roos BO, Sadlej AJ, Wolinski K (1990) Second-order perturbation theory with a casscf reference function. J Phys Chem 94(14):5483–5488

    CAS  Google Scholar 

  4. Angeli C, Cimiraglia R, Evangelisti S, Leininger T, Malrieu JP (2001) Introduction of n-electron valence states for multireference perturbation theory. J Chem Phys 114(23):10252–10264. https://doi.org/10.1063/1.1361246

    CAS  Google Scholar 

  5. Aquilante F, Autschbach J, Carlson RK, Chibotaru LF, Delcey MG, De Vico L, Fdez Galván I, Ferre N, Frutos LM, Gagliardi L et al (2016) Molcas 8: new capabilities for multiconfigurational quantum chemical calculations across the periodic table. J Comput Chem 37(5):506–541

    CAS  PubMed  Google Scholar 

  6. Atak K, Bokarev SI, Gotz M, Golnak R, Lange KM, Engel N, Dantz M, Suljoti E, Kühn O, Aziz EF (2013) Nature of the chemical bond of aqueous Fe2+ probed by soft X-ray spectroscopies and ab initio calculations. J Phys Chem B 117(41):12613–12618

    CAS  PubMed  Google Scholar 

  7. Bagus PS, Nelin CJ, Ilton ES, Sassi MJ, Rosso KM (2017) Analysis of X-ray adsorption edges: L2,3 edge of FeCl\(_4^{-}\). J Chem Phys 147(22):224306. https://doi.org/10.1063/1.5006223

    CAS  PubMed  Google Scholar 

  8. Bernadotte S, Atkins AJ, Jacob CR (2012) Origin-independent calculation of quadrupole intensities in X-ray spectroscopy. J Chem Phys 137(20):204106

    PubMed  Google Scholar 

  9. Blomberg MR, Siegbahn PE (1997) A comparative study of high-spin manganese and iron complexes. Theor Chem Acc 97(1–4):72–80

    CAS  Google Scholar 

  10. Bokarev SI, Dantz M, Suljoti E, Kühn O, Aziz EF (2013) State-dependent electron delocalization dynamics at the solute-solvent interface: soft-x-ray absorption spectroscopy and ab initio calculations. Phys Rev Lett 111(8):083002–083007

    PubMed  Google Scholar 

  11. Bokarev SI, Khan M, Abdel-Latif MK, Xiao J, Hilal R, Aziz SG, Aziz EF, Kühn O (2015) Unraveling the electronic structure of photocatalytic manganese complexes by L-edge X-ray spectroscopy. J Phys Chem C 119(33):19192–19200

    CAS  Google Scholar 

  12. Booth GH, Thom AJW, Alavi A (2009) Fermion monte carlo without fixed nodes: a game of life, death, and annihilation in slater determinant space. J Chem Phys 131(5):054106. https://doi.org/10.1063/1.3193710

    CAS  PubMed  Google Scholar 

  13. Bunău O, Joly Y (2012) Full potential x-ray absorption calculations using time dependent density functional theory. J Phys: Condens Matter 24(21):215502. http://stacks.iop.org/0953-8984/24/i=21/a=215502

  14. Cederbaum LS, Domcke W, Schirmer J (1980) Many-body theory of core holes. Phys Rev A 22:206–222. https://doi.org/10.1103/PhysRevA.22.206

  15. Chan GKL, Sharma S (2011) The density matrix renormalization group in quantum chemistry. Annu Rev Phys Chem 62(1):465–481. https://doi.org/10.1146/annurev-physchem-032210-103338 (pMID: 21219144)

  16. Chantzis A, Kowalska JK, Maganas D, DeBeer S, Neese F (2018) Ab initio wave function-based determination of element specific shifts for the efficient calculation of x-ray absorption spectra of main group elements and first row transition metals. J Chem Theory Comput 14(7):3686–3702. https://doi.org/10.1021/acs.jctc.8b00249 (pMID: 29894196)

  17. Coriani S, Christiansen O, Fransson T, Norman P (2012) Coupled-cluster response theory for near-edge x-ray-absorption fine structure of atoms and molecules. Phys Rev A 85:022507. https://link.aps.org/doi/10.1103/PhysRevA.85.022507

  18. Cossi M, Barone V (2000) Solvent effect on vertical electronic transitions by the polarizable continuum model. J Chem Phys 112(5):2427–2435

    CAS  Google Scholar 

  19. Cramer S, DeGroot F, Ma Y, Chen C, Sette F, Kipke C, Eichhorn D, Chan M, Armstrong W (1991) Ligand field strengths and oxidation states from manganese L-edge spectroscopy. J Am Chem Soc 113(21):7937–7940

    CAS  Google Scholar 

  20. De Groot F (2001) High-resolution x-ray emission and x-ray absorption spectroscopy. Chem Rev 101(6):1779–1808

    PubMed  Google Scholar 

  21. Douglas M, Kroll NM (1974) Quantum electrodynamical corrections to the fine structure of helium. Ann Phys 82(1):89–155

    CAS  Google Scholar 

  22. Ekström U, Norman P, Carravetta V, Ågren H (2006) Polarization propagator for x-ray spectra. Phys Rev Lett 97:143001. http://link.aps.org/doi/10.1103/PhysRevLett.97.143001

  23. Engel N, Bokarev SI, Suljoti E, Garcia-Diez R, Lange KM, Atak K, Golnak R, Kothe A, Dantz M, Kühn O, Aziz EF (2014) Chemical bonding in aqueous ferrocyanide: experimental and theoretical X-ray spectroscopic study. J Phys Chem B 118(6):1555–1563

    CAS  PubMed  Google Scholar 

  24. Forsberg N, Malmqvist PÅ (1997) Multiconfiguration perturbation theory with imaginary level shift. Chem Phys Lett 274(1):196–204

    CAS  Google Scholar 

  25. Gel’mukhanov F, Ågren H (1999) Resonant x-ray raman scattering. Phys Rep 312(3–6):87–330

    Google Scholar 

  26. Ghigo G, Roos BO, Malmqvist PÅ (2004) A modified definition of the zeroth-order Hamiltonian in multiconfigurational perturbation theory (CASPT2). Chem Phys Lett 396(1):142–149

    CAS  Google Scholar 

  27. Golnak R, Bokarev SI, Seidel R, Xiao J, Grell G, Atak K, Unger I, Thürmer S, Aziz SG, Kühn O et al (2016a) Joint analysis of radiative and non-radiative electronic relaxation upon X-ray irradiation of transition metal aqueous solutions. Sci Rep 6:24659

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Golnak R, Xiao J, Atak K, Unger I, Seidel R, Winter B, Aziz EF (2016b) Undistorted X-ray absorption spectroscopy using s-core-orbital emissions. J Phys Chem A 120(18):2808–2814

    CAS  PubMed  Google Scholar 

  29. Grell G, Bokarev SI, Winter B, Seidel R, Aziz EF, Aziz SG, Kühn O (2015) Multi-reference approach to the calculation of photoelectron spectra including spin-orbit coupling. J Chem Phys 143(7):074104

    PubMed  Google Scholar 

  30. Grell G, Bokarev SI, Winter B, Seidel R, Aziz EF, Aziz SG, Kühn O (2016) Erratum: multi-reference approach to the calculation of photoelectron spectra including spin-orbit coupling. J Chem Phys 143:074104 (2015). J Chem Phys 145(8):089901

    Google Scholar 

  31. de Groot F (2005) Multiplet effects in X-ray spectroscopy. Coord Chem Rev 249(1):31–63

    Google Scholar 

  32. Guo M, Källman E, Sørensen LK, Delcey MG, Pinjari RV, Lundberg M (2016a) Molecular orbital simulations of metal 1s2p resonant inelastic X-ray scattering. J Phys Chem A 120(29):5848–5855

    CAS  PubMed  Google Scholar 

  33. Guo M, Sørensen LK, Delcey MG, Pinjari RV, Lundberg M (2016b) Simulations of iron K pre-edge X-ray absorption spectra using the restricted active space method. Phys Chem Chem Phys 18(4):3250–3259

    CAS  PubMed  Google Scholar 

  34. Guo M, Källman E, Pinjari RV, Couto RC, Sørensen LK, Lindh R, Pierloot K, Lundberg M (2019) Fingerprinting electronic structure of heme iron by ab initio modeling of metal L-edge X-ray absorption spectra. J Chem Theory Comput 15(1):477–489. https://doi.org/10.1021/acs.jctc.8b00658

  35. Hess BA (1986) Relativistic electronic-structure calculations employing a two-component no-pair formalism with external-field projection operators. Phys Rev A 33(6):3742

    CAS  Google Scholar 

  36. Hocking RK, Wasinger EC, de Groot FM, Hodgson KO, Hedman B, Solomon EI (2006) Fe L-edge XAS studies of K\(_4\)[Fe(CN)\(_6\)] and K\(3\)[Fe(CN)\(_6\)]: a direct probe of back-bonding. J Am Chem Soc 128(32):10442–10451

    CAS  PubMed  Google Scholar 

  37. Holmes AA, Tubman NM, Umrigar CJ (2016) Heat-bath configuration interaction: an efficient selected configuration interaction algorithm inspired by heat-bath sampling. J Chem Theory Comput 12(8):3674–3680. https://doi.org/10.1021/acs.jctc.6b00407 (pMID: 27428771)

  38. Jan W, Michael W, Andreas D (2014) Calculating core-level excitations and x-ray absorption spectra of medium-sized closed-shell molecules with the algebraic-diagrammatic construction scheme for the polarization propagator. J Comput Chem 35(26):1900–1915. https://doi.org/10.1002/jcc.23703, https://onlinelibrary.wiley.com/doi/abs/10.1002/jcc.23703

  39. Jay RM, Norell J, Eckert S, Hantschmann M, Beye M, Kennedy B, Quevedo W, Schlotter WF, Dakovski GL, Minitti MP, Hoffmann MC, Mitra A, Moeller SP, Nordlund D, Zhang W, Liang HW, Kunnus K, Kubiek K, Techert SA, Lundberg M, Wernet P, Gaffney K, Odelius M, Föhlisch A (2018) Disentangling transient charge density and metalligand covalency in photoexcited ferricyanide with femtosecond resonant inelastic soft X-ray scattering. J Phys Chem Lett 9(12):3538–3543. https://doi.org/10.1021/acs.jpclett.8b01429 (pMID: 29888918)

  40. Jensen HJA, Jørgensen P, Ågren H (1987) Efficient optimization of large scale MCSCF wave functions with a restricted step algorithm. J Chem Phys 87(1):451–466

    Google Scholar 

  41. Johansson MP, Blomberg MR, Sundholm D, Wikström M (2002) Change in electron and spin density upon electron transfer to haem. Biochim Biophys Acta-Bioenerg 1553(3):183–187

    CAS  Google Scholar 

  42. Josefsson I, Kunnus K, Schreck S, Föhlisch A, de Groot F, Wernet P, Odelius M (2012) Ab initio calculations of X-ray spectra: atomic multiplet and molecular orbital effects in a multiconfigurational SCF approach to the L-Edge spectra of transition metal complexes. J Phys Chem Lett 3(23):3565–3570. https://doi.org/10.1021/jz301479j

  43. Klooster R, Broer R, Filatov M (2012) Calculation of x-ray photoelectron spectra with the use of the normalized elimination of the small component method. Chem Phys 395:122–127

    CAS  Google Scholar 

  44. Kroll T, Hadt RG, Wilson SA, Lundberg M, Yan JJ, Weng TC, Sokaras D, Alonso-Mori R, Casa D, Upton MH, Hedman B, Hodgson KO, Solomon EI (2014) Resonant inelastic X-ray scattering on ferrous and ferric bis-imidazole porphyrin and cytochrome c: nature and role of the axial methionine-Fe bond. J Am Chem Soc 136(52):18087–18099

    Google Scholar 

  45. Kroll T, Lundberg M, Solomon EI (2016) X-ray absorption and RIXS on coordination complexes. In: Van Bokhoven JA, Lamberti C (eds) X-ray absorption and X-ray emission spectroscopy: theory and applications. Wiley, Chichester, pp 407–435

    Google Scholar 

  46. Kubin M, Kern J, Gul S, Kroll T, Chatterjee R, Lchel H, Fuller FD, Sierra RG, Quevedo W, Weniger C, Rehanek J, Firsov A, Laksmono H, Weninger C, Alonso-Mori R, Nordlund DL, Lassalle-Kaiser B, Glownia JM, Krzywinski J, Moeller S, Turner JJ, Minitti MP, Dakovski GL, Koroidov S, Kawde A, Kanady JS, Tsui EY, Suseno S, Han Z, Hill E, Taguchi T, Borovik AS, Agapie T, Messinger J, Erko A, Föhlisch A, Bergmann U, Mitzner R, Yachandra VK, Yano J, Wernet P (2017) Soft x-ray absorption spectroscopy of metalloproteins and high-valent metal-complexes at room temperature using free-electron lasers. Struct Dyn 4(5):054307. https://doi.org/10.1063/1.4986627

  47. Kubin M, Guo M, Ekimova M, Baker ML, Kroll T, Källman E, Kern J, Yachandra VK, Yano J, Nibbering ET, Lundberg M, Wernet P (2018) Direct determination of absolute absorption cross sections at the L-Edge of dilute Mn complexes in solution using a transmission flatjet. Inorg Chem 57(9):5449–5462

    Google Scholar 

  48. Kubin M, Guo M, Ekimova M, Källman EJ, Kern J, Yachandra VK, Yano J, Nibbering ET, Lundberg M, Wernet P (2018) Cr L-edge X-ray absorption spectroscopy of CrIII (acac)\(_3\) in solution with measured and calculated absolute absorption cross sections. J Phys Chem B. https://doi.org/10.1021/acs.jpcb.8b04190

  49. Kubin M, Guo M, Kroll T, Löchel H, Källman E, Baker ML, Mitzner R, Gul S, Kern J, Föhlisch A, Erko A, Bergmann U, Yachandra VK, Yano J, Lundberg M, Wernet P (2018) Probing the oxidation state of transition metal complexes: a case study on how charge and spin densities determine Mn L-Edge X-ray absorption energies. Chem Sci. https://doi.org/10.1039/C8SC00550H

  50. Kubin M, Kern J, Guo M, Källman E, Mitzner R, Yachandra VK, Lundberg M, Yano J, Wernet P (2018) X-ray-induced sample damage at the Mn L-edge: a case study for soft X-ray spectroscopy of transition metal complexes in solution. Phys Chem Chem Phys 20:16817–16827

    Google Scholar 

  51. Kunnus K, Josefsson I, Rajkovic I, Schreck S, Quevedo W, Beye M, Grbel S, Scholz M, Nordlund D, Zhang W, Hartsock RW, Gaffney KJ, Schlotter WF, Turner JJ, Kennedy B, Hennies F, Techert S, Wernet P, Odelius M, Fhlisch A (2016) Anti-stokes resonant x-ray Raman scattering for atom specific and excited state selective dynamics. New J Phys 18(10):103011. http://stacks.iop.org/1367-2630/18/i=10/a=103011

  52. Kunnus K, Josefsson I, Rajkovic I, Schreck S, Quevedo W, Beye M, Weniger C, Grbel S, Scholz M, Nordlund D, Zhang W, Hartsock RW, Gaffney KJ, Schlotter WF, Turner JJ, Kennedy B, Hennies F, de Groot FMF, Techert S, Odelius M, Wernet P, Fhlisch A (2016) Identification of the dominant photochemical pathways and mechanistic insights to the ultrafast ligand exchange of Fe(CO)\(_5\) to Fe(CO)\(_4\)EtOH. Struct Dyn 3(4):043204. https://doi.org/10.1063/1.4941602

  53. Kunnus K, Zhang W, Delcey MG, Pinjari RV, Miedema PS, Schreck S, Quevedo W, Schroeder H, Föhlisch A, Gaffney KJ, Lundberg M, Odelius M, Wernet P (2016) Viewing the valence electronic structure of ferric and ferrous hexacyanide in solution from the Fe and cyanide perspectives. J Phys Chem B 120(29):7182–7194. https://doi.org/10.1021/acs.jpcb.6b04751

  54. Liang W, Fischer SA, Frisch MJ, Li X (2011) Energy-specific linear response TDHF/TDDFT for calculating high-energy excited states. J Chem Theory Comput 7(11):3540–3547. https://doi.org/10.1021/ct200485x

    CAS  PubMed  Google Scholar 

  55. List NH, Kauczor J, Saue T, Jensen HJA, Norman P (2015) Beyond the electric-dipole approximation: a formulation and implementation of molecular response theory for the description of absorption of electromagnetic field radiation. J Chem Phys 142(24):244111

    PubMed  Google Scholar 

  56. List NH, Saue T, Norman P (2017) Rotationally averaged linear absorption spectra beyond the electric-dipole approximation. Mol Phys 115(1–2):63–74

    CAS  Google Scholar 

  57. Liu Y, Persson P, Sundström V, Wärnmark K (2016) Fe N-heterocyclic carbene complexes as promising photosensitizers. Acc Chem Res 49(8):1477–1485

    CAS  PubMed  Google Scholar 

  58. Lundberg M, Kroll T, DeBeer S, Bergmann U, Wilson SA, Glatzel P, Nordlund D, Hedman B, Hodgson KO, Solomon EI (2013) Metal-ligand covalency of iron complexes from high-resolution resonant inelastic X-ray scattering. J Am Chem Soc 135(45):17121–17134. https://doi.org/10.1021/ja408072q (pMID: 24131028)

  59. Ma D, Li Manni G, Gagliardi L (2011) The generalized active space concept in multiconfigurational self-consistent field methods. J Chem Phys 135(4):044128. https://doi.org/10.1063/1.3611401

    CAS  PubMed  Google Scholar 

  60. Maganas D, DeBeer S, Neese F (2014) Restricted open-shell configuration interaction cluster calculations of the L-Edge X-ray absorption study of TiO\(_2\) and CaF\(_2\) solids. Inorg Chem 53(13):6374–6385. https://doi.org/10.1021/ic500197v (pMID: 24871209)

  61. Malmqvist PÅ (1986) Calculation of transition density matrices by nonunitary orbital transformations. Int J Quantum Chem 30(4):479–494. https://doi.org/10.1002/qua.560300404

  62. Malmqvist PÅ, Rendell A, Roos BO (1990) The restricted active space self-consistent-field method, implemented with a split graph unitary group approach. J Phys Chem 94(14):5477–5482. https://doi.org/10.1021/j100377a011

  63. Malmqvist PÅ, Roos BO, Schimmelpfennig B (2002) The restricted active space (RAS) state interaction approach with spin-orbit coupling. Chem Phys Lett 357(3):230–240

    CAS  Google Scholar 

  64. Malmqvist PÅ, Pierloot K, Shahi ARM, Cramer CJ, Gagliardi L (2008) The restricted active space followed by second-order perturbation theory method: theory and application to the study of CuO\(_2\) and Cu\(_2\)O\(_2\) systems. J Chem Phys 128(20):204109

    PubMed  Google Scholar 

  65. Nakata A, Imamura Y, Otsuka T, Nakai H (2006) Time-dependent density functional theory calculations for core-excited states: assessment of standard exchange-correlation functionals and development of a novel hybrid functional. J Chem Phys 124(9):094105. https://doi.org/10.1063/1.2173987

    CAS  Google Scholar 

  66. Norell J, Jay RM, Hantschmann M, Eckert S, Guo M, Gaffney KJ, Wernet P, Lundberg M, Föhlisch A, Odelius M (2018) Fingerprints of electronic, spin and structural dynamics from resonant inelastic soft X-ray scattering in transient photo-chemical species. Phys Chem Chem Phys 20(10):7243–7253

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Norman P, Dreuw A (2018) Simulating X-ray spectroscopies and calculating core-excited states of molecules. Chem Rev 118(15):7208–7248

    Google Scholar 

  68. Penfold TJ, Reinhard M, Rittmann-Frank MH, Tavernelli I, Rothlisberger U, Milne CJ, Glatzel P, Chergui M (2014) X-ray spectroscopic study of solvent effects on the ferrous and ferric hexacyanide anions. J Phys Chem A 118(40):9411–9418

    CAS  PubMed  Google Scholar 

  69. Pierloot K (2003) The CASPT2 method in inorganic electronic spectroscopy: from ionic transition metal to covalent actinide complexes. Mol Phys 101(13):2083–2094

    CAS  Google Scholar 

  70. Pierloot K, Phung QM, Domingo A (2017) Spin state energetics in first-row transition metal complexes: contribution of (3s3p) correlation and its description by second-order perturbation theory. J Chem Theory Comput 13(2):537–553. https://doi.org/10.1021/acs.jctc.6b01005 (pMID: 28005368)

  71. Pinjari RV, Delcey MG, Guo M, Odelius M, Lundberg M (2014) Restricted active space calculations of L-edge X-ray absorption spectra: From molecular orbitals to multiplet states. J Chem Phys 141(12):124116

    PubMed  Google Scholar 

  72. Pinjari RV, Delcey MG, Guo M, Odelius M, Lundberg M (2015) Erratum: restricted active space calculations of L-edge X-ray absorption spectra: from molecular orbitals to multiplet states. J Chem Phys 141:124116 (2014)]. J Chem Phys 142(6):069901

    Google Scholar 

  73. Pinjari RV, Delcey MG, Guo M, Odelius M, Lundberg M (2016) Cost and sensitivity of restricted active-space calculations of metal L-edge X-ray absorption spectra. J Comput Chem 37(5):477–486

    CAS  PubMed  Google Scholar 

  74. Preuße M, Bokarev SI, Aziz SG, Kühn O (2016) Towards an ab initio theory for metal L-edge soft X-ray spectroscopy of molecular aggregates. Struct Dynam 3(6):062601

    Google Scholar 

  75. Roemelt M, Maganas D, DeBeer S, Neese F (2013) A combined DFT and restricted open-shell configuration interaction method including spin-orbit coupling: application to transition metal L-edge X-ray absorption spectroscopy. J Chem Phys 138(20):204101

    PubMed  Google Scholar 

  76. Roos BO (1980) The complete active space SCF method in a fock-matrix-based super-CI formulation. Int J Quantum Chem 18(S14):175–189. https://doi.org/10.1002/qua.560180822

  77. Roos BO, Lindh R, Malmqvist PÅ, Veryazov V, Widmark PO (2004) Main group atoms and dimers studied with a new relativistic ANO basis set. J Phys Chem A 108(15):2851–2858

    CAS  Google Scholar 

  78. Roos BO, Lindh R, Malmqvist PÅ, Veryazov V, Widmark PO (2005) New relativistic ANO basis sets for transition metal atoms. J Phys Chem A 109(29):6575–6579

    CAS  PubMed  Google Scholar 

  79. Roos BO, Lindh R, Malmqvist PÅ, Veryazov V, Widmark PO (2016) Multiconfigurational quantum chemistry. Wiley, New York

    Google Scholar 

  80. van Schooneveld MM, Juhin A, Campos-Cuerva C, Schmitt T, de Groot FM (2013) Origin of low energy d-d excitations observed on wet chemically prepared cobalt bearing nanoparticles by 2p3d resonant X-ray emission spectroscopy. J Phys Chem C 117(27):14398–14407

    Google Scholar 

  81. Sørensen LK, Guo M, Lindh R, Lundberg M (2017) Applications to metal K pre-edges of transition metal dimers illustrate the approximate origin independence for the intensities in the length representation. Mol Phys 115(1–2):174–189

    Google Scholar 

  82. Sørensen LK, Kieri E, Srivastava S, Lundberg M, Lindh R (2019) Implementation of the exact semiclassical light-matter interaction using the Gauss-Hermite quadrature: A simple alternative to the multipole expansion. Phys Rev A 99(013419):1–11. https://doi.org/10.1103/PhysRevA.99.013419

  83. Stein CJ, Reiher M (2016) Automated selection of active orbital spaces. J Chem Theory Comput 12(4):1760–1771. https://doi.org/10.1021/acs.jctc.6b00156 (pMID: 26959891)

  84. Stener M, Fronzoni G, de Simone M (2003) Time dependent density functional theory of core electrons excitations. Chem Phys Lett 373(1):115–123. https://doi.org/10.1016/S0009-2614(03)00543-8

  85. Stenrup M, Lindh R, Fdez Galván I (2015) Constrained numerical gradients and composite gradients: practical tools for geometry optimization and potential energy surface navigation. J Comput Chem 36(22):1698–1708

    CAS  PubMed  Google Scholar 

  86. Suljoti E, Garcia-Diez R, Bokarev SI, Lange KM, Schoch R, Dierker B, Dantz M, Yamamoto K, Engel N, Atak K, Kuhn O, Bauer M, Rubensson JE, Aziz EF (2013) Direct observation of molecular orbital mixing in a solvated organometallic complex. Angew Chem Int Ed 52(37):9841–9844. https://doi.org/10.1002/anie.201303310, https://onlinelibrary.wiley.com/doi/abs/10.1002/anie.201303310

  87. Tanaka A, Jo T (1994) Resonant 3d, 3p and 3s photoemission in transition metal oxides predicted at 2p threshold. J Phys Soc JPN 63(7):2788–2807

    CAS  Google Scholar 

  88. Thürmer S, Seidel R, Eberhardt W, Bradforth SE, Winter B (2011) Ultrafast hybridization screening in Fe3+ aqueous solution. J Am Chem Soc 133(32):12528–12535

    PubMed  Google Scholar 

  89. Van Schooneveld M, DeBeer S (2015) A close look at dose: toward l-edge xas spectral uniformity, dose quantification and prediction of metal ion photoreduction. J Electron Spectrosc Relat Phenom 198:31–56

    Google Scholar 

  90. Wang H, Bokarev SI, Aziz SG, Kühn O (2017) Ultrafast spin-state dynamics in transition-metal complexes triggered by soft-X-ray light. Phys Rev Lett 118(2):023001

    PubMed  Google Scholar 

  91. Wasinger EC, De Groot FM, Hedman B, Hodgson KO, Solomon EI (2003) L-edge X-ray absorption spectroscopy of non-heme iron sites: experimental determination of differential orbital covalency. J Am Chem Soc 125(42):12894–12906

    CAS  PubMed  Google Scholar 

  92. Wernet P, Kunnus K, Schreck S, Quevedo W, Kurian R, Techert S, de Groot FM, Odelius M, Föhlisch A (2012) Dissecting local atomic and intermolecular interactions of transition-metal ions in solution with selective X-ray spectroscopy. J Phys Chem Lett 3(23):3448–3453

    CAS  PubMed  Google Scholar 

  93. Wernet P, Kunnus K, Josefsson I, Rajkovic I, Quevedo W, Beye M, Schreck S, Gruebel S, Scholz M, Nordlund D, Zhang W, Hartsock RW, Schlotter WF, Turner JJ, Kennedy B, Hennies F, de Groot FMF, Gaffney KJ, Techert S, Odelius M, Foehlisch A (2015) Orbital-specific mapping of the ligand exchange dynamics of Fe(CO)\(_5\) in solution. Nature 520(7545):78–81

    Google Scholar 

  94. Westre TE, Kennepohl P, DeWitt JG, Hedman B, Hodgson KO, Solomon EI (1997) A multiplet analysis of Fe K-edge 1s 3d pre-edge features of iron complexes. J Am Chem Soc 119(27):6297–6314

    CAS  Google Scholar 

  95. Wilson SA, Kroll T, Decreau RA, Hocking RK, Lundberg M, Hedman B, Hodgson KO, Solomon EI (2013) Iron L-Edge X-ray absorption spectroscopy of oxy-picket fence porphyrin: experimental insight into Fe-O\(_2\) bonding. J Am Chem Soc 135(3):1124–1136

    Google Scholar 

  96. Yano J, Yachandra V (2014) Mn\(_4\)Ca cluster in photosynthesis: where and how water is oxidized to dioxygen. Chem Rev 114(8):4175–4205

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Zobel JP, Nogueira JJ, Gonzalez L (2017) The ipea dilemma in caspt2. Chem Sci 8:1482–1499. https://doi.org/10.1039/C6SC03759C

Download references

Acknowledgements

We acknowledge financial support from the foundation Olle Engkvist Byggmastare and the Knut and Alice Wallenberg Foundation (Grant No. KAW-2013.0020). We thank Meiyuan Guo and Michael Odelius for useful discussions.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Marcus Lundberg or Mickaël G. Delcey .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lundberg, M., Delcey, M.G. (2019). Multiconfigurational Approach to X-ray Spectroscopy of Transition Metal Complexes. In: Broclawik, E., Borowski, T., Radoń, M. (eds) Transition Metals in Coordination Environments. Challenges and Advances in Computational Chemistry and Physics, vol 29. Springer, Cham. https://doi.org/10.1007/978-3-030-11714-6_7

Download citation

Publish with us

Policies and ethics