Skip to main content

Part of the book series: PoliTO Springer Series ((PTSS))

Abstract

The chapter presents numerical assessments of physically nonlinear problems through a class of refined one-dimensional theories based on the Carrera Unified Formulation (CUF). CUF is a hierarchical formulation to generate refined structural theories through a variable kinematic approach. Physical nonlinearities include von Mises plasticity and cohesive interface modeling for delamination of composites. This work aims to provide insights into the effect of kinematic enrichment on the overall nonlinear behavior of the structure. Guidelines stem from the evaluation of the accuracy and numerical efficiency of the proposed models against analytical and numerical approaches from the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abambres M, Camotim D, Silvestre N (2014) GBT-based elastic-plastic post-buckling analysis of stainless steel thin-walled members. Thin-Walled Struct 83:85–102

    Article  Google Scholar 

  2. Bathe KJ (1996) Finite element procedures. Prentice Hall, USA

    MATH  Google Scholar 

  3. Benzeggagh ML, Kenane M (1996) Measurement of mixed-mode delamination fracture toughness of unidirectional glass/epoxy composites with mixed-mode bending apparatus. Compos Sci Technol 56(4):439–449

    Article  Google Scholar 

  4. Bernoulli D (1751) Commentarii academiae scientiarum imperialis petropolitanae, chapter De vibrationibus et sono laminarum. Petropoli

    Google Scholar 

  5. Carrera E (1994) A study on arc-length-type methods and their operation failures illustrated by a simple model. Comput Struct 50(2):217–229

    Article  MathSciNet  Google Scholar 

  6. Carrera E, Giunta G (2010) Refined beam theories based on a unified formulation. Int J Appl Mech 2:117–143

    Article  Google Scholar 

  7. Carrera E, Petrolo M (2011) Refined beam elements with only displacement variables and plate/shell capabilities. Meccanica 47:537–556

    Article  MathSciNet  Google Scholar 

  8. Carrera E, Kaleel I, Petrolo M (2017) Elastoplastic analysis of compact and thin-walled structures using classical and refined beam finite element models. Mech Adv Mater Struct (in press)

    Google Scholar 

  9. Carrera E, Cinefra M, Petrolo M, Zappino E (2014) Finite element analysis of structures through unified formulation. Wiley, United Kingdom

    Book  Google Scholar 

  10. Cesnik CES, Hodges DH (1997) VABS: a new concept for composite rotor blade cross-sectional modeling. J Am Helicopter Soc 42(1):27–38

    Article  Google Scholar 

  11. Eijo A, Oñate E, Oller S (2013) A numerical model of delamination in composite laminated beams using the LRZ beam element based on the refined zigzag theory. Compos Struct 104:270–280

    Article  Google Scholar 

  12. Euler L (1744) De curvis elasticis. Bousquet, Geneva

    Google Scholar 

  13. Filippi M, Carrera E (2016) Capabilities of 1D CUF-based models to analyse metallic/composite rotors. Adv Aircr Spacecr Sci 3(1):1–14

    Article  Google Scholar 

  14. Groh RMJ, Tessler A (2017) Computationally efficient beam elements for accurate stresses in sandwich laminates and laminated composites with delaminations. Comput Methods Appl Mech Eng 320:369–395

    Article  MathSciNet  Google Scholar 

  15. Gutiérrez MA (2004) Energy release control for numerical simulations of failure in quasi-brittle solids. Commun Numer Methods Eng 20(1):19–29

    Article  Google Scholar 

  16. Jiang F, Yu W (2016) Nonlinear variational asymptotic sectional analysis of hyperelastic beams. AIAA J 54(2):679–690

    Article  Google Scholar 

  17. Jiang F, Yu W (2017) Damage analysis by physically nonlinear composite beam theory. Compos Struct 182:652–665

    Article  Google Scholar 

  18. Kaleel I, Petrolo M, Waas AM, Carrera E (2017) Computationally efficient, high-fidelity micromechanics framework using refined 1D models. Compos Struct 181:358–367

    Article  Google Scholar 

  19. Kaleel I, Petrolo M, Waas AM, Carrera E (2018) Micromechanical progressive failure analysis of fiber-reinforced composite using refined beam models. J Appl Mech 85(2)

    Article  Google Scholar 

  20. Kaleel I, Petrolo M, Carrera E (2018) Elastoplastic and progressive failure analysis of fiber-reinforced composites via an efficient nonlinear microscale model. Aerotec Missili Spaz 97(2):103–110

    Article  Google Scholar 

  21. Mi Y, Crisfield MA, Davies GAO, Hellweg HB (1998) Progressive delamination using interface elements. J Compos Mater 32(4):1246–1272

    Article  Google Scholar 

  22. Pagani A, Carrera E (2017) Large-deflection and post-buckling analyses of laminated composite beams by Carrera Unified Formulation. Compos Struct 170:40–52

    Article  Google Scholar 

  23. Pollayi H, Yu W (2014) Modeling matrix cracking in composite rotor blades within VABS framework. Compos Struct 110:62–76

    Article  Google Scholar 

  24. Riks E (1979) An incremental approach to the solution of snapping and buckling problems. Int J Solids Struct 15(7):529–551

    Article  MathSciNet  Google Scholar 

  25. Schardt R (1994) Generalized beam theory-an adequate method for coupled stability problems. Thin-Walled Struct 19(2–4):161–180

    Article  Google Scholar 

  26. Sherman J, Morrison WJ (1950) Adjustment of an inverse matrix corresponding to a change in one element of a given matrix. Ann Math Stat 21(1):124–127

    Article  MathSciNet  Google Scholar 

  27. Simo JC, Ju JW (1987) Strain- and stress-based continuum damage models—-i. formulation. Int J Solids Struct 23(7):821–840

    Article  Google Scholar 

  28. Škec L, Jelenić G, Lustig N (2015) Mixed-mode delamination in 2D layered beam finite elements. Int J Numer Methods Eng 104:767–788

    Article  MathSciNet  Google Scholar 

  29. Timoshenko SP (1921) On the correction for shear of the differential equation for transverse vibration of prismatic bars. Philos Mag Ser 41(6):744–746

    Article  Google Scholar 

  30. Timoshenko SP, Gere JM (1991) Mechanics of materials. Springer-Science+Business Media, New York

    Google Scholar 

  31. Turon A, Camanho PP, Costa J, Davila CG (2006) A damage model for the simulation of delamination in advanced composites under variable-mode loading. NASA/Tech. Mem. 213277

    Google Scholar 

  32. Verhoosel CV, Remmers JJ, Gutiérrez MA (2009) A dissipation-based arc-length method for robust simulation of brittle and ductile failure. Int J Numer Methods Eng 77:1290–1321

    Article  Google Scholar 

  33. Ye L (1996) Measurement of mixed-mode delamination fracture toughness of unidirectional glass/epoxy composites with mixed-mode bending apparatus. Compos Sci Technol 56(4):439–449

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Kaleel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kaleel, I., Petrolo, M., Carrera, E., Waas, A.M. (2019). On the Effectiveness of Higher-Order One-Dimensional Models for Physically Nonlinear Problems. In: Petrolo, M. (eds) Advances in Predictive Models and Methodologies for Numerically Efficient Linear and Nonlinear Analysis of Composites. PoliTO Springer Series. Springer, Cham. https://doi.org/10.1007/978-3-030-11969-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-11969-0_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-11968-3

  • Online ISBN: 978-3-030-11969-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics