Skip to main content

The Hip in Myelomeningocele

  • Chapter
  • First Online:
The Pediatric and Adolescent Hip

Abstract

Musculoskeletal manifestations associated with myelomeningocele (MMC) are common; often resulting in significant functional impairments relating to gait abnormalities, seating imbalance, and skin ulceration. Hip deformities, including soft tissue contractures and dislocation, are seen across neurosegmental levels; the former of which may cause impairments in ambulatory capacity. Hip dislocation in MMC was treated aggressively in the past due to a then commonly held view that reducing these hips would lead to better outcomes. Over the last 20 years, this view has been challenged, with best evidence suggesting that the risks of treatment for hip dislocation in spina bifida far outweigh the benefits. Muscle lengthening, however, can lead to improvements in gait and function. This chapter will review the evidence relating to the treatment of the hip in spina bifida, emphasizing a measured approach when addressing associated deformities, particularly with respect to dislocation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Broughton NS, Menelaus MB, Cole WG, Shurtleff DB. The natural history of hip deformity in myelomeningocele. J Bone Joint Surg Br. 1993;75(5):760–3.

    Article  CAS  Google Scholar 

  2. Wright JG. Hip and spine surgery is of questionable value in spina bifida: an evidence-based review. Clin Orthop Relat Res. 2011;469(5):1258–64. https://doi.org/10.1007/s11999-010-1595-y.

    Article  PubMed  Google Scholar 

  3. Tulpius N. Observationes medicae. Amsterdam: Elzevirium; 1641.

    Google Scholar 

  4. Asher M, Olson J. Factors affecting the ambulatory status of patients with spina bifida cystica. J Bone Joint Surg Am. 1983;65(3):350–6.

    Article  CAS  Google Scholar 

  5. Sharrard WJ. The segmental innervation of the lower limb muscles in man. Ann R Coll Surg Engl. 1964;35:106–22.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Duckworth T, Yamashita T, Franks CI, Brown BH. Somatosensory evoked cortical responses in children with spina bifida. Dev Med Child Neurol. 1976;18(1):19–24.

    Article  CAS  Google Scholar 

  7. Stark Gordon D, Baker Geoffrey CW. The neurological involvement of the lower limbs in myelomeningocele. Dev Med Child Neurol. 1967;9(6):732–44. https://doi.org/10.1111/j.1469-8749.1967.tb02355.x.

    Article  Google Scholar 

  8. Shurtleff DB. International Myelodysplasia Study Group Database Coordination. Seattle, WA: Department of Pediatrics, University of Washington; 1993.

    Google Scholar 

  9. Charney EB, Melchionni JB, Smith DR. Community ambulation by children with myelomeningocele and high-level paralysis. J Pediatr Orthop. 1991;11(5):579–82.

    Article  CAS  Google Scholar 

  10. Mazur JM, Kyle S. Efficacy of bracing the lower limbs and ambulation training in children with myelomeningocele. Dev Med Child Neurol. 2004;46(5):352–6.

    Article  Google Scholar 

  11. Stillwell A, Menelaus MB. Walking ability in mature patients with spina bifida. J Pediatr Orthop. 1983;3(2):184–90.

    Article  CAS  Google Scholar 

  12. Swank M, Dias L. Myelomeningocele: a review of the orthopaedic aspects of 206 patients treated from birth with no selection criteria. Dev Med Child Neurol. 1992;34(12):1047–52.

    Article  CAS  Google Scholar 

  13. De Souza LJ, Carroll N. Ambulation of the braced myelomeningocele patient. J Bone Joint Surg Am. 1976;58(8):1112–8.

    Article  Google Scholar 

  14. McDonald CM, Jaffe KM, Mosca VS, Shurtleff DB. Ambulatory outcome of children with myelomeningocele: effect of lower-extremity muscle strength. Dev Med Child Neurol. 1991;33(6):482–90.

    Article  CAS  Google Scholar 

  15. Samuelsson L, Skoog M. Ambulation in patients with myelomeningocele: a multivariate statistical analysis. J Pediatr Orthop. 1988;8(5):569–75.

    Article  CAS  Google Scholar 

  16. Swank M, Dias LS. Walking ability in spina bifida patients: a model for predicting future ambulatory status based on sitting balance and motor level. J Pediatr Orthop. 1994;14(6):715–8.

    Article  CAS  Google Scholar 

  17. Selber P, Dias L. Sacral-level myelomeningocele: long-term outcome in adults. J Pediatr Orthop. 1998;18(4):423–7.

    CAS  PubMed  Google Scholar 

  18. Brinker MR, Rosenfeld SR, Feiwell E, Granger SP, Mitchell DC, Rice JC. Myelomeningocele at the sacral level. Long-term outcomes in adults. J Bone Joint Surg Am. 1994;76(9):1293–300.

    Article  CAS  Google Scholar 

  19. Khoury MJ, Erickson JD, James LM. Etiologic heterogeneity of neural tube defects. II. Clues from family studies. Am J Hum Genet. 1982;34(6):980–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Seller MJ. Recurrence risks for neural tube defects in a genetic counseling clinic population. J Med Genet. 1981;18(4):245–8.

    Article  CAS  Google Scholar 

  21. Toriello HV, Higgins JV. Occurrence of neural tube defects among first-, second-, and third-degree relatives of probands: results of a United States study. Am J Med Genet. 1983;15(4):601–6. https://doi.org/10.1002/ajmg.1320150409.

    Article  CAS  PubMed  Google Scholar 

  22. Yang Y, Chen J, Wang B, Ding C, Liu H. Association between MTHFR C677T polymorphism and neural tube defect risks: a comprehensive evaluation in three groups of NTD patients, mothers, and fathers. Birth Defects Res A Clin Mol Teratol. 2015;103(6):488–500. https://doi.org/10.1002/bdra.23361.

    Article  CAS  PubMed  Google Scholar 

  23. Benedum CM, Yazdy MM, Mitchell AA, Werler MM. Impact of periconceptional use of nitrosatable drugs on the risk of neural tube defects. Am J Epidemiol. 2015;182(8):675–84. https://doi.org/10.1093/aje/kwv126.

    Article  PubMed  Google Scholar 

  24. Loeken MR. Current perspectives on the causes of neural tube defects resulting from diabetic pregnancy. Am J Med Genet C Semin Med Genet. 2005;135C(1):77–87. https://doi.org/10.1002/ajmg.c.30056.

    Article  PubMed  Google Scholar 

  25. Makelarski JA, Romitti PA, Rocheleau CM, Burns TL, Stewart PA, Waters MA, et al. Maternal periconceptional occupational pesticide exposure and neural tube defects. Birth Defects Res A Clin Mol Teratol. 2014;100(11):877–86. https://doi.org/10.1002/bdra.23293.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Reefhuis J, Honein MA, Schieve LA, Rasmussen SA, National Birth Defects Prevention Study. Use of clomiphene citrate and birth defects, National Birth Defects Prevention Study, 1997–2005. Hum Reprod. 2011;26(2):451–7. https://doi.org/10.1093/humrep/deq313.

    Article  CAS  PubMed  Google Scholar 

  27. Dreier JW, Andersen AM, Berg-Beckhoff G. Systematic review and meta-analyses: fever in pregnancy and health impacts in the offspring. Pediatrics. 2014;133(3):e674–88. https://doi.org/10.1542/peds.2013-3205.

    Article  PubMed  Google Scholar 

  28. Hibbard E, Smithells RW. Folic acid metabolism and human embryopathy. Lancet. 1965;285(7398):1254. https://doi.org/10.1016/S0140-6736(65)91895-7.

    Article  Google Scholar 

  29. Smithells RW, Sheppard S, Schorah CJ. Vitamin deficiencies and neural tube defects. Arch Dis Child. 1976;51(12):944–50.

    Article  CAS  Google Scholar 

  30. Wald NJ, Hackshaw AD, Stone R, Sourial NA. Blood folic acid and vitamin B12 in relation to neural tube defects. Br J Obstet Gynaecol. 1996;103(4):319–24.

    Article  CAS  Google Scholar 

  31. Hernandez-Diaz S, Werler MM, Walker AM, Mitchell AA. Folic acid antagonists during pregnancy and the risk of birth defects. N Engl J Med. 2000;343(22):1608–14. https://doi.org/10.1056/NEJM200011303432204.

    Article  CAS  PubMed  Google Scholar 

  32. Laurence KM, James N, Miller MH, Tennant GB, Campbell H. Double-blind randomised controlled trial of folate treatment before conception to prevent recurrence of neural-tube defects. Br Med J (Clin Res Ed). 1981;282(6275):1509–11.

    Article  CAS  Google Scholar 

  33. MRC Vitamin Study Research Group. Prevention of neural tube defects: results of the Medical Research Council Vitamin Study. Lancet. 1991;338(8760):131–7.

    Article  Google Scholar 

  34. Centers for Disease Control Prevention (CDC). Spina bifida and anencephaly before and after folic acid mandate--United States, 1995–1996 and 1999–2000. MMWR Morb Mortal Wkly Rep. 2004;53(17):362–5.

    Google Scholar 

  35. Shurtleff DB, Menelaus MB, Staheli LT, Chew DE, Lamers JY, Stillwell A, et al. Natural history of flexion deformity of the hip in myelodysplasia. J Pediatr Orthop. 1986;6(6):666–73.

    Article  CAS  Google Scholar 

  36. Breed AL, Healy PM. The midlumbar myelomeningocele hip: mechanism of dislocation and treatment. J Pediatr Orthop. 1982;2(1):15–24.

    Article  CAS  Google Scholar 

  37. Lindseth RE, Dias LS, Drennan JC. Myelomeningocele. Instr Course Lect. 1991;40:271–91.

    CAS  PubMed  Google Scholar 

  38. Menelaus MB, Broughton NS. The orthopaedic management of spina bifida cystica, Current problems in orthopaedics. 3rd ed. Edinburgh: WB Saunders; 1998.

    Google Scholar 

  39. Buckley SL, Sponseller PD, Magid D. The acetabulum in congenital and neuromuscular hip instability. J Pediatr Orthop. 1991;11(4):498–501.

    Article  CAS  Google Scholar 

  40. Gugenheim JJ, Gerson LP, Sadler C, Tullos HS. Pathologic morphology of the acetabulum in paralytic and congenital hip instability. J Pediatr Orthop. 1982;2(4):397–400.

    Article  CAS  Google Scholar 

  41. Blundell Jones G. Paralytic dislocation of the hip. J Bone Joint Surg. 1954;36(3):375–84.

    Article  Google Scholar 

  42. Somerville EW. Paralytic dislocation of the hip. J Bone Joint Surg Br. 1959;41-B(2):279–88.

    Article  CAS  Google Scholar 

  43. Brookes M, Wardle E. Muscle action and the shape of the femur. J Bone Joint Surg Br. 1962;44-B(2):398–411.

    Article  Google Scholar 

  44. Dias LS, Locher FG, Mazur JM, Olysav D. Femoral neck abnormalities in spina bifida. Clin Orthop Relat Res. 1984;(184):164–8.

    Google Scholar 

  45. Dias LS, Hill JA. Evaluation of treatment of hip subluxation in myelomeningocele by intertrochanteric varus derotation femoral osteotomy. Orthop Clin North Am. 1980;11(1):31–7.

    CAS  PubMed  Google Scholar 

  46. Feiwell E, Sakai D, Blatt T. The effect of hip reduction on function in patients with myelomeningocele. Potential gains and hazards of surgical treatment. J Bone Joint Surg Am. 1978;60(2):169–73.

    Article  CAS  Google Scholar 

  47. Keggi J, Banta J, Walton C. The myelodysplastic hip and scoliosis. Eur J Pediatr Surg. 1991;1(Suppl 1):47.

    PubMed  Google Scholar 

  48. Fraser RK, Bourke HM, Broughton NS, Menelaus MB. Unilateral dislocation of the hip in spina bifida. A long-term follow-up. J Bone Joint Surg Br. 1995;77(4):615–9.

    Article  CAS  Google Scholar 

  49. Lorber J. Results of treatment of myelomeningocele. An analysis of 524 unselected cases, with special reference to possible selection for treatment. Dev Med Child Neurol. 1971;13(3):279–303.

    Article  CAS  Google Scholar 

  50. Davis BE, Daley CM, Shurtleff DB, Duguay S, Seidel K, Loeser JD, et al. Long-term survival of individuals with myelomeningocele. Pediatr Neurosurg. 2005;41(4):186–91. https://doi.org/10.1159/000086559.

    Article  PubMed  Google Scholar 

  51. Oakeshott P, Hunt GM, Poulton A, Reid F. Expectation of life and unexpected death in open spina bifida: a 40-year complete, non-selective, longitudinal cohort study. Dev Med Child Neurol. 2010;52(8):749–53. https://doi.org/10.1111/j.1469-8749.2009.03543.x.

    Article  PubMed  Google Scholar 

  52. Wong LY, Paulozzi LJ. Survival of infants with spina bifida: a population study, 1979–94. Paediatr Perinat Epidemiol. 2001;15(4):374–8.

    Article  CAS  Google Scholar 

  53. McDonnell GV, McCann JP. Why do adults with spina bifida and hydrocephalus die? A clinic-based study. Eur J Pediatr Surg. 2000;10(S1):31–2. https://doi.org/10.1055/s-2008-1072411.

    Article  PubMed  Google Scholar 

  54. Murray CB, Holmbeck GN, Ros AM, Flores DM, Mir SA, Varni JW. A longitudinal examination of health-related quality of life in children and adolescents with spina bifida. J Pediatr Psychol. 2015;40(4):419–30. https://doi.org/10.1093/jpepsy/jsu098.

    Article  PubMed  Google Scholar 

  55. Rocque BG, Bishop ER, Scogin MA, Hopson BD, Arynchyna AA, Boddiford CJ, et al. Assessing health-related quality of life in children with spina bifida. J Neurosurg Pediatr. 2015;15(2):144–9. https://doi.org/10.3171/2014.10.peds1441.

    Article  PubMed  Google Scholar 

  56. Rofail D, Maguire L, Kissner M, Colligs A, Abetz-Webb L. Health-related quality of life is compromised in individuals with spina bifida: results from qualitative and quantitative studies. Eur J Obstet Gynecol Reprod Biol. 2014;181:214–22. https://doi.org/10.1016/j.ejogrb.2014.07.048.

    Article  PubMed  Google Scholar 

  57. Bellin MH, Zabel TA, Dicianno BE, Levey E, Garver K, Linroth R, et al. Correlates of depressive and anxiety symptoms in young adults with spina bifida. J Pediatr Psychol. 2010;35(7):778–89. https://doi.org/10.1093/jpepsy/jsp094.

    Article  PubMed  Google Scholar 

  58. Arnett J, Lynn Tanner J, Gibbons J, Ashdown BK. Emerging adults in America: coming of age in the 21st century. Washington, DC: American Psychological Association; 2006.

    Book  Google Scholar 

  59. Roach JW, Short BF, Saltzman HM. Adult consequences of spina bifida: a cohort study. Clin Orthop Relat Res. 2011;469(5):1246–52. https://doi.org/10.1007/s11999-010-1594-z.

    Article  PubMed  Google Scholar 

  60. Hoffman HJ, Hendrick EB, Humphreys RP. The tethered spinal cord: its protean manifestations, diagnosis and surgical correction. Childs Brain. 1976;2(3):145–55.

    CAS  PubMed  Google Scholar 

  61. Mazur JM, Shurtleff D, Menelaus M, Colliver J. Orthopaedic management of high-level spina bifida. Early walking compared with early use of a wheelchair. J Bone Joint Surg Am. 1989;71(1):56–61.

    Article  CAS  Google Scholar 

  62. Wallace SJ. The effect of upper-limb function on mobility of children with myelomeningocele. Dev Med Child Neurol Suppl. 1973;(Suppl 29):84–91.

    Article  Google Scholar 

  63. Danielsson AJ, Bartonek A, Levey E, McHale K, Sponseller P, Saraste H. Associations between orthopaedic findings, ambulation and health-related quality of life in children with myelomeningocele. J Child Orthop. 2008;2(1):45–54. https://doi.org/10.1007/s11832-007-0069-6.

    Article  PubMed  Google Scholar 

  64. Hoffer MM, Feiwell E, Perry R, Perry J, Bonnett C. Functional ambulation in patients with myelomeningocele. J Bone Joint Surg Am. 1973;55(1):137–48.

    Article  CAS  Google Scholar 

  65. Huff CW, Ramsey PL. Myelodysplasia. The influence of the quadriceps and hip abductor muscles on ambulatory function and stability of the hip. J Bone Joint Surg Am. 1978;60(4):432–43.

    Article  CAS  Google Scholar 

  66. Schoenmakers MA, Uiterwaal CS, Gulmans VA, Gooskens RH, Helders PJ. Determinants of functional independence and quality of life in children with spina bifida. Clin Rehabil. 2005;19(6):677–85. https://doi.org/10.1191/0269215505cr865oa.

    Article  CAS  PubMed  Google Scholar 

  67. Bartonek A, Saraste H. Factors influencing ambulation in myelomeningocele: a cross-sectional study. Dev Med Child Neurol. 2001;43(4):253–60.

    Article  CAS  Google Scholar 

  68. Schopler SA, Menelaus MB. Significance of the strength of the quadriceps muscles in children with myelomeningocele. J Pediatr Orthop. 1987;7(5):507–12.

    Article  CAS  Google Scholar 

  69. Seitzberg A, Lind M, Biering-Sorensen F. Ambulation in adults with myelomeningocele. Is it possible to predict the level of ambulation in early life? Childs Nerv Syst. 2008;24(2):231–7. https://doi.org/10.1007/s00381-007-0450-2.

    Article  PubMed  Google Scholar 

  70. Gabrieli AP, Vankoski SJ, Dias LS, Milani C, Lourenco A, Filho JL, et al. Gait analysis in low lumbar myelomeningocele patients with unilateral hip dislocation or subluxation. J Pediatr Orthop. 2003;23(3):330–4.

    PubMed  Google Scholar 

  71. Alman BA, et al. Function of dislocated hips in children with lower level spina bifida. J Bone Joint Surg Br. 1996;78(2):294–8.

    Article  Google Scholar 

  72. Swaroop VT, Dias L. Orthopedic management of spina bifida. Part I: hip, knee, and rotational deformities. J Child Orthop. 2009;3(6):441–9. https://doi.org/10.1007/s11832-009-0214-5.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Beuriat PA, Szathmari A, Hameury F, Poirot I, Massoud M, Massardier J et al. [Changes in the epidemiology of Spina Bifida in France in the last 30 years]. Neurochirurgie. 2017;63(2):109–111. doi:https://doi.org/10.1016/j.neuchi.2017.01.003.

    Article  Google Scholar 

  74. Khoshnood B, Loane M, de Walle H, Arriola L, Addor MC, Barisic I, et al. Long term trends in prevalence of neural tube defects in Europe: population based study. BMJ. 2015;351:h5949. https://doi.org/10.1136/bmj.h5949.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. North T, Cheong A, Steinbok P, Radic JA. Trends in incidence and long-term outcomes of myelomeningocele in British Columbia. Childs Nerv Syst. 2018;34(4):717–24. https://doi.org/10.1007/s00381-017-3685-6.

    Article  PubMed  Google Scholar 

  76. Orioli IM, Lima do Nascimento R, Lopez-Camelo JS, Castilla EE. Effects of folic acid fortification on spina bifida prevalence in Brazil. Birth Defects Res A Clin Mol Teratol. 2011;91(9):831–5. https://doi.org/10.1002/bdra.20830.

    Article  CAS  PubMed  Google Scholar 

  77. Canfield MA, Marengo L, Ramadhani TA, Suarez L, Brender JD, Scheuerle A. The prevalence and predictors of anencephaly and spina bifida in Texas. Paediatr Perinat Epidemiol. 2009;23(1):41–50. https://doi.org/10.1111/j.1365-3016.2008.00975.x.

    Article  PubMed  Google Scholar 

  78. Centers for Disease Control Prevention (CDC). Racial/ethnic differences in the birth prevalence of spina bifida - United States, 1995–2005. MMWR Morb Mortal Wkly Rep. 2009;57(53):1409–13.

    Google Scholar 

  79. Deak KL, Siegel DG, George TM, Gregory S, Ashley-Koch A, Speer MC, et al. Further evidence for a maternal genetic effect and a sex-influenced effect contributing to risk for human neural tube defects. Birth Defects Res A Clin Mol Teratol. 2008;82(10):662–9. https://doi.org/10.1002/bdra.20511.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Matson MA, Mahone EM, Zabel TA. Serial neuropsychological assessment and evidence of shunt malfunction in spina bifida: a longitudinal case study. Child Neuropsychol. 2005;11(4):315–32. https://doi.org/10.1080/09297040490916910.

    Article  PubMed  Google Scholar 

  81. McLone DG, Czyzewski D, Raimondi AJ, Sommers RC. Central nervous system infections as a limiting factor in the intelligence of children with myelomeningocele. Pediatrics. 1982;70(3):338.

    Google Scholar 

  82. de Jong TP, Chrzan R, Klijn AJ, Dik P. Treatment of the neurogenic bladder in spina bifida. Pediatr Nephrol. 2008;23(6):889–96. https://doi.org/10.1007/s00467-008-0780-7.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Muller T, Arbeiter K, Aufricht C. Renal function in meningomyelocele: risk factors, chronic renal failure, renal replacement therapy and transplantation. Curr Opin Urol. 2002;12(6):479–84. https://doi.org/10.1097/01.mou.0000039446.39928.32.

    Article  PubMed  Google Scholar 

  84. Smith K, Neville-Jan A, Freeman KA, Adams E, Mizokawa S, Dudgeon BJ, et al. The effectiveness of bowel and bladder interventions in children with spina bifida. Dev Med Child Neurol. 2016;58(9):979–88. https://doi.org/10.1111/dmcn.13095.

    Article  PubMed  Google Scholar 

  85. Sawin KJ, Liu T, Ward E, Thibadeau J, Schechter MS, Soe MM, et al. The National Spina Bifida Patient Registry: profile of a large cohort of participants from the first 10 clinics. J Pediatr. 2015;166(2):444–50.e1. https://doi.org/10.1016/j.jpeds.2014.09.039.

    Article  PubMed  Google Scholar 

  86. Ottolini K, Harris AB, Amling JK, Kennelly AM, Phillips LA, Tosi LL. Wound care challenges in children and adults with spina bifida: an open-cohort study. J Pediatr Rehabil Med. 2013;6(1):1–10. https://doi.org/10.3233/PRM-130231.

    Article  PubMed  Google Scholar 

  87. Alliaume A. [Fractures of the long bones in myelomeningocele]. Arch Fr Pediatr. 1950;7(3):294–5.

    Google Scholar 

  88. Lock TR, Aronson DD. Fractures in patients who have myelomeningocele. J Bone Joint Surg Am. 1989;71(8):1153–7.

    Article  CAS  Google Scholar 

  89. Gabriel K. Natural history of hip deformity in spina bifida. In: Sarwark JF, Lubicky JP, Shriners Hospitals for Children, editors. Caring for the child with spina bifida: Shriners Hospitals for Children, Symposium, Oak Brook, Illinois, April 14–16, 2000. 1st ed. Rosemont, IL: American Academy of Orthopaedic Surgeon; 2001. p. 89.

    Google Scholar 

  90. Carroll NC, Sharrard WJ. Long-term follow-up of posterior iliopsoas transplantation for paralytic dislocation of the hip. J Bone Joint Surg Am. 1972;54(3):551–60.

    Article  CAS  Google Scholar 

  91. Samuelsson L, Eklof O. Hip instability in myelomeningocele. 158 patients followed for 15 years. Acta Orthop Scand. 1990;61(1):3–6.

    Article  CAS  Google Scholar 

  92. Barden GA, Meyer LC, Stelling FH III. Myelodysplastics--fate of those followed for twenty years or more. J Bone Joint Surg Am. 1975;57(5):643–7.

    Article  CAS  Google Scholar 

  93. Park TS, Cail WS, Maggio WM, Mitchell DC. Progressive spasticity and scoliosis in children with myelomeningocele. Radiological investigation and surgical treatment. J Neurosurg. 1985;62(3):367–75. https://doi.org/10.3171/jns.1985.62.3.0367.

    Article  CAS  PubMed  Google Scholar 

  94. Sarwark JF, Weber DT, Gabrieli AP, McLone DG, Dias L. Tethered cord syndrome in low motor level children with myelomeningocele. Pediatr Neurosurg. 1996;25(6):295–301. https://doi.org/10.1159/000121143.

    Article  CAS  PubMed  Google Scholar 

  95. Menelaus MB. Dislocation and deformity of the hip in children with spina bifida cystica. J Bone Joint Surg Br. 1969;51(2):238–51.

    Article  CAS  Google Scholar 

  96. Sharrard WJ. Paralytic deformity in the lower limb. J Bone Joint Surg Br. 1967;49(4):731–47.

    Article  CAS  Google Scholar 

  97. Vankoski SJ, Sarwark JF, Moore C, Dias L. Characteristic pelvic, hip, and knee kinematic patterns in children with lumbosacral myelomeningocele. Gait Posture. 1995;3(1):51–7. https://doi.org/10.1016/0966-6362(95)90809-7.

    Article  Google Scholar 

  98. Sarwark JF, Lubicky JP, Shriners Hospitals for Children. Caring for the child with spina bifida: Shriners Hospitals for Children, Symposium, Oak Brook, Illinois, April 14–16, 2000. 1st ed. Rosemont, IL: American Academy of Orthopaedic Surgeon; 2001.

    Google Scholar 

  99. Duffy CM, Hill AE, Cosgrove AP, Corry IS, Mollan RA, Graham HK. Three-dimensional gait analysis in spina bifida. J Pediatr Orthop. 1996;16(6):786–91.

    Article  CAS  Google Scholar 

  100. Drummond DS, Moreau M, Cruess RL. Post-operative neuropathic fractures in patients with myelomeningocele. Dev Med Child Neurol. 1981;23(2):147–50.

    Article  CAS  Google Scholar 

  101. James CC. Fractures of the lower limbs in spina bifida cystica: a survey of 44 fractures in 122 children. Dev Med Child Neurol Suppl. 1970;22(Suppl 22):88+.

    Google Scholar 

  102. Kumar SJ, Cowell HR, Townsend P. Physeal, metaphyseal, and diaphyseal injuries of the lower extremities in children with myelomeningocele. J Pediatr Orthop. 1984;4(1):25–7.

    Article  CAS  Google Scholar 

  103. Boytim MJ, Davidson RS, Charney E, Melchionni JB. Neonatal fractures in myelomeningocele patients. J Pediatr Orthop. 1991;11(1):28–30.

    Article  CAS  Google Scholar 

  104. Martinelli V, Dell’Atti C, Ausili E, Federici E, Magarelli N, Leone A, et al. Risk of fracture prevention in spina bifida patients: correlation between bone mineral density, vitamin D, and electrolyte values. Childs Nerv Syst. 2015;31(8):1361–5. https://doi.org/10.1007/s00381-015-2726-2.

    Article  CAS  PubMed  Google Scholar 

  105. Szalay EA, Cheema A. Children with spina bifida are at risk for low bone density. Clin Orthop Relat Res. 2011;469(5):1253–7. https://doi.org/10.1007/s11999-010-1634-8.

    Article  PubMed  Google Scholar 

  106. Valtonen KM, Goksor LA, Jonsson O, Mellstrom D, Alaranta HT, Viikari-Juntura ER. Osteoporosis in adults with meningomyelocele: an unrecognized problem at rehabilitation clinics. Arch Phys Med Rehabil. 2006;87(3):376–82. https://doi.org/10.1016/j.apmr.2005.11.004.

    Article  PubMed  Google Scholar 

  107. Kaufman BA, Terbrock A, Winters N, Ito J, Klosterman A, Park TS. Disbanding a multidisciplinary clinic: effects on the health care of myelomeningocele patients. Pediatr Neurosurg. 1994;21(1):36–44. https://doi.org/10.1159/000120812.

    Article  CAS  PubMed  Google Scholar 

  108. Broughton NS. The hip. In: Broughton NS, Menelaus MB, editors. Menelaus’ orthopaedic management of spina bifida cystica. 3rd ed. London: W.B. Saunders; 1998. p. 135–44.

    Google Scholar 

  109. Morakis E, Wright J. Evidence-based treatment of spina bifida. In: Alshryda S, Huntley J, Banaszkiewicz PA, editors. Evidence-based paediatric orthopaedics: the best answers to clinical questions. 1st ed. New York, NY: Springer; 2016.

    Google Scholar 

  110. Frawley PA, Broughton NS, Menelaus MB. Anterior release for fixed flexion deformity of the hip in spina bifida. J Bone Joint Surg Br. 1996;78(2):299–302.

    Article  CAS  Google Scholar 

  111. Mazur JM. Orthopedic complications of myelomeningocele. In: Epps CH, Bowen JR, editors. Complications in pediatric orthopaedic surgery. Philadelphia, PA: Lippincott; 1995. p. 545–64.

    Google Scholar 

  112. Buisson JS, Hamblen DL. Electromyographic assessment of the transplanted ilio-psoas muscle in spina bifida cystica. Dev Med Child Neurol Suppl. 1972;27:29–33.

    CAS  PubMed  Google Scholar 

  113. Rothe MJ. A cluster of anaphylactic reactions in children with spina bifida during general anesthesia: epidemiological features, risk factors, and latex hypersensitivity. Dermatitis. 1995;6(3):53–61.

    Google Scholar 

  114. Meeropol E, Frost J, Pugh L, Roberts J, Ogden JA. Latex allergy in children with myelodysplasia: a survey of Shriners hospitals. J Pediatr Orthop. 1993;13(1):1–4.

    Article  CAS  Google Scholar 

  115. Pearson Michele L, Cole Jeane S, Jarvis William R. How common is latex allergy? A survey of children with myelodysplasia. Dev Med Child Neurol. 1994;36(1):64–9. https://doi.org/10.1111/j.1469-8749.1994.tb11767.x.

    Article  Google Scholar 

  116. Tosi LL, Slater JE, Shaer C, Mostello LA. Latex allergy in spina bifida patients: prevalence and surgical implications. J Pediatr Orthop. 1993;13(6):709–12.

    Article  CAS  Google Scholar 

  117. Nieto A, Estornell F, Mazón A, Reig C, Nieto A, García-Ibarra F. Allergy to latex in spina bifida: a multivariate study of associated factors in 100 consecutive patients. J Allergy Clin Immunol. 1996;98(3):501–7. https://doi.org/10.1016/S0091-6749(96)70082-9.

    Article  CAS  PubMed  Google Scholar 

  118. Yassin MS, Sanyurah S, Lierl MB, Fischer TJ, Oppenheimer S, Cross J, et al. Evaluation of latex allergy in patients with meningomyelocele. Ann Allergy. 1992;69(3):207–11.

    CAS  PubMed  Google Scholar 

  119. Slater JE. Latex allergy. J Allergy Clin Immunol. 1994;94(2):139–49. https://doi.org/10.1053/ai.1994.v94.a55437.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emmanouil Morakis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Morakis, E., Howard, J.J., Wright, J. (2019). The Hip in Myelomeningocele. In: Alshryda, S., Howard, J., Huntley, J., Schoenecker, J. (eds) The Pediatric and Adolescent Hip. Springer, Cham. https://doi.org/10.1007/978-3-030-12003-0_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-12003-0_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-12002-3

  • Online ISBN: 978-3-030-12003-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics