Skip to main content

Functional Genomics of the Infant Human Thymus: AIRE and Minipuberty

  • Chapter
  • First Online:
Thymus Transcriptome and Cell Biology

Abstract

Sexual dimorphism in the immune system is well documented in humans and it encompasses sex differences in responses to self and foreign antigens. Indeed, women usually mount stronger immune responses to infections and vaccination but have higher susceptibility to autoimmune diseases than men (Klein and Flanagan 2016). Regarding autoimmune diseases, it is striking that 80% of autoimmune patients are women (Rubtsova et al. 2015). Autoimmunity results from a tolerance breakdown and essentially involves the thymus, the site of T cell selection (Cheng and Anderson 2018). T cell selection depends on the ectopic thymic transcription of thousands of genes coding for tissue-specific antigens, which is induced by the autoimmune regulator gene AIRE (Passos et al. 2018; Perniola 2018). In spite of our incomplete knowledge on the biological processes responsible for autoimmunity, it is reasonable to assume that sex hormones impact the genomic mechanisms governing AIRE functions. An important experimental evidence supporting this assumption came from the work of Dumont-Lagacé et al. (2015), who showed in a murine model that sex hormones have pervasive effects on thymic epithelial cells (TEC)—antigen presenting cells that regulate T cell repertoire and tolerance—and that androgens have a greater impact on TEC transcriptome than estrogens. In this study, the authors observed that sex steroids repressed the expression of tissue-restricted antigens but did not alter the expression of Aire. Just after this work, Dragin et al. (2016) demonstrated that estrogen mediates the downregulation of AIRE in human pubescent and adult thymic tissues, thus indicating that the reduced expression of AIRE protein in women may be related to autoimmunity susceptibility. However, this study did not cover infants along the first 6 months of age, i.e. during minipuberty (Kuiri-Hänninen et al. 2014), a period when sex hormones conceivably act on thymic tissue.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abramson J, Goldfarb Y (2016) AIRE: from promiscuous molecular partnerships to promiscuous gene expression. Eur J Immunol 46(1):22–33

    Article  CAS  Google Scholar 

  • Abramson J, Giraud M, Benoist C, Mathis D (2010) Aire’s partners in the molecular control of immunological tolerance. Cell 140(1):123–135

    Article  CAS  Google Scholar 

  • Arnold AP (2017) Y chromosome’s roles in sex differences in disease. Proc Natl Acad Sci U S A 114(15):3787–3789

    Article  CAS  Google Scholar 

  • Chaussabel D, Baldwin N (2014) Democratizing systems immunology with modular transcriptional repertoire analyses. Nat Rev Immunol 14(4):271–280

    Article  CAS  Google Scholar 

  • Cheng M, Anderson MS (2018) Thymic tolerance as a key brake on autoimmunity. Nat Immunol 19(7):659–664

    Article  CAS  Google Scholar 

  • Dragin N, Bismuth J, Cizeron-Clairac G, Biferi MG, Berthault C, Serraf A et al (2016) Estrogen-mediated downregulation of AIRE influences sexual dimorphism in autoimmune diseases. J Clin Invest 126(4):1525–1537

    Article  Google Scholar 

  • Dumont-Lagacé M, St-Pierre C, Perreault C (2015) Sex hormones have pervasive effects on thymic epithelial cells. Sci Rep 5:12895

    Article  Google Scholar 

  • Edwards M, Dai R, Ahmed SA (2018) Our environment shapes us: the importance of environment and sex differences in regulation of autoantibody production. Front Immunol 9:478

    Article  Google Scholar 

  • Gies V, Guffroy A, Danion F, Billaud P, Keime C, Fauny JD et al (2017) B cells differentiate in human thymus and express AIRE. J Allergy Clin Immunol 139(3):1049–52.e12

    Article  CAS  Google Scholar 

  • Guerra-Silveira F, Abad-Franch F (2013) Sex bias in infectious disease epidemiology: patterns and processes. PLoS One 8(4):e62390

    Article  CAS  Google Scholar 

  • Klein SL, Flanagan KL (2016) Sex differences in immune responses. Nat Rev Immunol 16(10):626–638

    Article  CAS  Google Scholar 

  • Kuiri-Hänninen T, Sankilampi U, Dunkel L (2014) Activation of the hypothalamic-pituitary-gonadal axis in infancy: minipuberty. Horm Res Paediatr 82(2):73–80

    Article  Google Scholar 

  • Langfelder P, Horvath S (2008) WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics 9:559

    Article  Google Scholar 

  • Markle JG, Fish EN (2014) SeXX matters in immunity. Trends Immunol 35(3):97–104

    Article  CAS  Google Scholar 

  • Moreira-Filho CA, Bando SY, Bertonha FB, Silva FN, Costa LF, Ferreira LR et al (2016) Modular transcriptional repertoire and MicroRNA target analyses characterize genomic dysregulation in the thymus of Down syndrome infants. Oncotarget 7(7):7497–7533

    Article  Google Scholar 

  • Moreira-Filho CA, Bando SY, Bertonha FB, Ferreira LR, Vinhas CF, Oliveira LHB et al (2018) Minipuberty and sexual dimorphism in the infant human thymus. Sci Rep 8(1):13169

    Article  Google Scholar 

  • Muenchhoff M, Goulder PJ (2014) Sex differences in pediatric infectious diseases. J Infect Dis 209(Suppl 3):S120–S126

    Article  CAS  Google Scholar 

  • Passos GA, Speck-Hernandez CA, Assis AF, Mendes-da-Cruz DA (2018) Update on Aire and thymic negative selection. Immunology 153(1):10–20

    Article  CAS  Google Scholar 

  • Perniola R (2018) Twenty years of AIRE. Front Immunol 9:98

    Article  Google Scholar 

  • Rubtsova K, Marrack P, Rubtsov AV (2015) Sexual dimorphism in autoimmunity. J Clin Invest 125(6):2187–2193

    Article  Google Scholar 

  • Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D et al (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13(11):2498–2504

    Article  CAS  Google Scholar 

  • Steinmann GG (1986) Changes in the human thymus during aging. Curr Top Pathol 75:43–88

    Article  CAS  Google Scholar 

  • Steinmann GG, Klaus B, Müller-Hermelink HK (1985) The involution of the ageing human thymic epithelium is independent of puberty. A morphometric study. Scand J Immunol 22(5):563–575

    Article  CAS  Google Scholar 

  • Zhu ML, Bakhru P, Conley B, Nelson JS, Free M, Martin A et al (2016) Sex bias in CNS autoimmune disease mediated by androgen control of autoimmune regulator. Nat Commun 7:11350

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial Support This work was funded by Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) research grants 2015/22308-2 (CAM-F) and 2014/50489-9 (MC-S); and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) grant 307626/2014-8 (CAM-F).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos Alberto Moreira-Filho .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Moreira-Filho, C.A., Bando, S.Y., Bertonha, F.B., Carneiro-Sampaio, M. (2019). Functional Genomics of the Infant Human Thymus: AIRE and Minipuberty. In: Passos, G. (eds) Thymus Transcriptome and Cell Biology. Springer, Cham. https://doi.org/10.1007/978-3-030-12040-5_10

Download citation

Publish with us

Policies and ethics