Skip to main content

Strigolactones as Plant Hormones

  • Chapter
  • First Online:
Strigolactones - Biology and Applications

Abstract

In the last decade strigolactones have been recognized as a novel type of plant hormones. They are involved in the control of key developmental processes such as lateral shoot outgrowth and leaf and root development, among others. In addition, strigolactones modulate plant responses to abiotic stresses like phosphate starvation and drought. Here we summarize the current knowledge of the widely conserved functions of strigolactones in the control of plant development and stress responses as well as some of their reported species-specific roles. In addition, we will review their known genetic and functional interactions with other phytohormones. The newly discovered activities of strigolactones as plant hormones raise the possibility of using these compounds and their signalling pathways as tools to optimise species of agronomical importance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aguilar-Martínez JA, Poza-Carrión C, Cubas P (2007) Arabidopsis BRANCHED1 acts as an integrator of branching signals within axillary buds. Plant Cell 19:458–472

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Akiyama K, Matsuzaki K, Hayashi H (2005) Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi. Nature 435:824–827

    Article  CAS  PubMed  Google Scholar 

  • Agusti J, Herold S, Schwarz M, Sanchez P, Ljung K, Dun EA, Brewer PB, Beveridge CA, Sieberer T, Sehr EM et al (2011) Strigolactone signalling is required for auxin-dependent stimulation of secondary growth in plants. Proc Natl Acad Sci U S A 108:20242–20247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Andreo-Jimenez B, Ruyter-Spira C, Bouwmeester HJ, Lopez-Raez JA (2015) Ecological relevance of strigolactones in nutrient uptake and other abiotic stresses, and in plant-microbe interactions below-ground. Plant Soil 394:1–19

    Article  CAS  Google Scholar 

  • Arite T, Umehara M, Ishikawa S, Hanada A, Maekawa M, Yamaguchi S, Kyozuka J (2009) d14, a strigolactone-insensitive mutant of rice, shows an accelerated outgrowth of tillers. Plant Cell Physiol 50:1416–1424

    Article  CAS  PubMed  Google Scholar 

  • Arite T, Iwata H, Ohshima K, Maekawa M, Nakajima M, Kojima M, Sakakibara H, Kyozuka J (2007) DWARF10, an RMS1/MAX4/DAD1 ortholog, controls lateral bud outgrowth in rice. Plant J 51:1019–1029

    Article  CAS  PubMed  Google Scholar 

  • Aroca R, Ruiz-Lozano JM, Zamarreno AM, Paz JA, Garcia-Mina JM, Pozo MJ, López-Ráez JA (2013) Arbuscular mycorrhizal symbiosis influences strigolactone production under salinity and alleviates salt stress in lettuce plants. J Plant Physiol 170:47–55

    Article  CAS  PubMed  Google Scholar 

  • Artuso E, Ghibaudi E, Lace B, Marabello D, Vinciguerra D, Lombardi C, Koltai H, Kapulnik Y, Novero M, Occhiato EG, Scarpi D, Parisotto S, Deagostino A, Venturello P, Mayzlish-Gati E, Bier A, Prandi C (2015) Stereochemical assignment of strigolactone analogues confirms their selective biological activity. J Nat Prod 78:2624–2633

    Article  CAS  PubMed  Google Scholar 

  • Bainbridge K, Sorefan K, Ward S, Leyser O (2005) Hormonally controlled expression of the Arabidopsis MAX4 shoot branching regulatory gene. Plant J 44:569–580

    Article  CAS  PubMed  Google Scholar 

  • Balzergue C, Puech-Pagès V, Bécard G, Rochange SF (2011) The regulation of arbuscular mycorrhizal symbiosis by phosphate in pea involves early and systemic signalling events. J Exp Bot 62:1049–1060

    Article  CAS  PubMed  Google Scholar 

  • Basu S, Ramegowda V, Kumar A, Pereira A (2016) Plant adaptation to drought stress. F1000 Res 5:1554

    Article  CAS  Google Scholar 

  • Bennett T, Sieberer T, Willett B, Booker J, Luschnig C, Leyser O (2006) The Arabidopsis MAX pathway controls shoot branching by regulating auxin transport. Curr Biol 16:553–563

    Article  CAS  PubMed  Google Scholar 

  • Bennett T, Liang Y, Seale M, Ward S, Müller D, Leyser O (2016) Strigolactone regulates shoot development through a core signalling pathway. Biol Open 5:1806–1820

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beveridge CA, Dun EA, Rameau C (2009) Pea has its tendrils in branching discoveries spanning a century from auxin to strigolactones. Plant Physiol 151:985–990

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beveridge CA, Symons GM, Turnbull CG (2000) Auxin inhibition of decapitation-induced branching is dependent on graft-transmissible signals regulated by genes Rms1 and Rms2. Plant Physiol 123:689–698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bodner G, Nakhforoosh A, Kaul HP (2015) Management of crop water under drought: a review. Agron Sustain Dev 35:401–442

    Article  Google Scholar 

  • Booker J, Auldridge M, Wills S, McCarty D, Klee H, Leyser O (2004) MAX3/CCD7 is a carotenoid cleavage dioxygenase required for the synthesis of a novel plant signalling molecule. Curr Biol 14:1232–1238

    Article  CAS  PubMed  Google Scholar 

  • Braun N, de Saint Germain A, Pillot J-PJ-P, Boutet-Mercey S, Dalmais M, Antoniadi I, Li X, Maia-Grondard A, Le Signor C, Bouteiller N et al (2012) The pea TCP transcription factor PsBRC1 acts downstream of strigolactones to control shoot branching. Plant Physiol 158:225–238

    Article  CAS  PubMed  Google Scholar 

  • Breuillin F, Schramm J, Hajirezaei M, Ahkami A, Favre P, Druege U, Hause B, Bucher M, Kretzschmar T, Bossolini E, Kuhlemeier C, Martinoia E, Franken P, Scholz U, Reinhardt D (2010) Phosphate systemically inhibits development of arbuscular mycorrhiza in Petunia hybrida and represses genes involved in mycorrhizal functioning. Plant J 64:1002–1017

    Article  CAS  PubMed  Google Scholar 

  • Brewer PB, Dun EA, Gui R, Mason MG, Beveridge CA (2015) Strigolactone inhibition of branching independent of polar auxin transport. Plant Physiol 168:1820–1829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brewer PB, Dun EA, Ferguson BJ, Rameau C, Beveridge CA (2009) Strigolactone acts downstream of auxin to regulate bud outgrowth in pea and Arabidopsis. Plant Physiol 150:482–493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bu Q, Lv T, Shen H, Luong P, Wang J, Wang Z, Huang Z, Xiao L, Engineer C, Kim TH, Schroeder JI, Huq E (2014) Regulation of drought tolerance by the F-box protein MAX2 in Arabidopsis. Plant Physiol 164:424–439

    Article  CAS  PubMed  Google Scholar 

  • Bythell-Douglas R, Rothfels CJ, Stevenson DWD, Graham SW, Wong GK, Nelson DC, Bennett T (2017) Evolution of strigolactone receptors by gradual neo-functionalization of KAI2 paralogues. BMC Biol 15:52

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cardinale F, Korwin Krukowski P, Schubert A, Visentin I (2018) Strigolactones: mediators of osmotic stress responses with a potential for agrochemical manipulation of crop resilience. J Exp Bot 69:2291–2303

    Article  CAS  PubMed  Google Scholar 

  • Chaves MM, Maroco JP, Pereira JS (2003) Understanding plant responses to drought-from genes to the whole plant. Funct Plant Biol 30:239–264

    Article  CAS  PubMed  Google Scholar 

  • Chevalier F, Nieminen K, Sánchez-Ferrero JC, Rodríguez ML, Chagoyen M, Hardtke CS, Cubas P (2014) Strigolactone promotes degradation of DWARF14, an α/β hydrolase essential for strigolactone signaling in Arabidopsis. Plant Cell 26:1134–1150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Conn CE, Nelson DC (2016) Evidence that KARRIKIN-INSENSITIVE2 (KAI2) receptors may perceive an unknown signal that is not karrikin or strigolactone. Front Plant Sci 6:1219

    Article  PubMed  PubMed Central  Google Scholar 

  • Cook CE, Whichard LP, Turner B, Wall ME, Egley GH (1966) Germination of witchweed (Striga lutea Lour.): isolation and properties of a potent stimulant. Science 154:1189–1190

    Article  CAS  PubMed  Google Scholar 

  • Crawford S, Shinohara N, Sieberer T, Williamson L, George G, Hepworth J, Müller D, Domagalska MA, Leyser O (2010) Strigolactones enhance competition between shoot branches by dampening auxin transport. Development 137:2905–2913

    Article  CAS  PubMed  Google Scholar 

  • Czarnecki O, Yang J, Weston DJ, Tuskan GA, Chen JG (2013) A dual role of strigolactones in phosphate acquisition and utilization in plants. Int J Mol Sci 14:7681–7701

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • De Cuyper C, Fromentin J, Yocgo RE, De Keyser A, Guillotin B, Kunert K, Boyer FD, Goormachtig S (2015) From lateral root density to nodule number, the strigolactone analogue GR24 shapes the root architecture of Medicago truncatula. J Exp Bot 66:137–146

    Article  PubMed  CAS  Google Scholar 

  • de Jong M, George G, Ongaro V, Williamson L, Willetts B, Ljung K, McCulloch H, Leyser O (2014) Auxin and strigolactone signalling are required for modulation of Arabidopsis shoot branching by nitrogen supply. Plant Physiol 166:384–395

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • de Saint Germain A, Ligerot Y, Dun EA, Pillot J-PJ-P, Ross JJ, Beveridge CA, Rameau C (2013) Strigolactones stimulate internode elongation independently of gibberellins. Plant Physiol 163:1012–1025

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Doebley J, Stec A, Hubbard L (1997) The evolution of apical dominance in maize. Nature 386:485–488

    Article  CAS  PubMed  Google Scholar 

  • Dun EA, de Saint Germain A, Rameau C, Beveridge CA (2012) Antagonistic action of strigolactone and cytokinin in bud outgrowth control. Plant Physiol 158:487–498

    Article  CAS  PubMed  Google Scholar 

  • Foo E, Bullier E, Goussot M, Foucher F, Rameau C, Beveridge CA (2005) The branching gene RAMOSUS1 mediates interactions among two novel signals and auxin in pea. Plant Cell 17:464–474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gomez-Roldan V, Fermas S, Brewer PB, Puech-Pagès V, Dun EA, Pillot J-P, Letisse F, Matusova R, Danoun S, Portais JC et al (2008) Strigolactone inhibition of shoot branching. Nature 455:189–194

    Article  CAS  PubMed  Google Scholar 

  • Guan JC, Koch KE, Suzuki M, Wu S, Latshaw S, Petruff T, Goulet C, Klee HJ, McCarty DR (2012) Diverse roles of strigolactone signalling in maize architecture and the uncoupling of a branching-specific subnetwork. Plant Physiol 160:1303–1317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ha CV, Leyva-González MA, Osakabe Y, Tran UT, Nishiyama R, Watanabe Y, Tanaka M, Seki M, Yamaguchi S, Dong NV, Yamaguchi-Shinozaki K, Shinozaki K, Herrera-Estrella L, Tran LS (2014) Positive regulatory role of strigolactone in plant responses to drought and salt stress. Proc Natl Acad Sci U S A 111:851–856

    Article  PubMed  CAS  Google Scholar 

  • Haider I, Andreo-Jimenez B, Bruno M, Bimbo A, Floková K, Abuauf H, Otang Ntui V, Guo X, Charnikhova T, Al-Babili S, Bouwmeester HJ, Ruyter-Spira C (2018) The interaction of strigolactones with abscisic acid during the drought response in rice. J Exp Bot 69:2403–2414

    CAS  PubMed  Google Scholar 

  • Hamiaux C, Drummond RS, Janssen BJ, Ledger SE, Cooney JM, Newcomb RD, Snowden KC (2012) DAD2 is an α/β hydrolase likely to be involved in the perception of the plant branching hormone, strigolactone. Curr Biol 22:2032–2036

    Article  CAS  PubMed  Google Scholar 

  • Hayward A, Stirnberg P, Beveridge C, Leyser O (2009) Interactions between auxin and strigolactone in shoot branching control. Plant Physiol 151:400–412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu Q, He Y, Wang L, Liu S, Meng X, Liu G, Jing Y, Chen M, Song X, Jiang L, Yu H, Wang B, Li J (2017) DWARF14, a receptor covalently linked with the active form of strigolactones, undergoes strigolactone-dependent degradation in rice. Front Plant Sci 8:1935

    Article  PubMed  PubMed Central  Google Scholar 

  • Ito S, Yamagami D, Umehara M, Hanada A, Yoshida S, Sasaki Y, Yajima S, Kyozuka J, Ueguchi-Tanaka M, Matsuoka M, Shirasu K, Yamaguchi S, Asami T (2017) Regulation of strigolactone biosynthesis by gibberellin signalling. Plant Physiol 174:1250–1259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ito S, Ito K, Abeta N, Takahashi R, Sasaki Y, Yajima S (2016) Effects of strigolactone signalling on Arabidopsis growth under nitrogen deficient stress condition. Plant Signal Behav 11:e1126031

    Article  PubMed  CAS  Google Scholar 

  • Ito S, Nozoye T, Sasaki E, Imai M, Shiwa Y, Shibata-Hatta M, Ishige T, Fukui K, Ito K, Nakanishi H, Nishizawa NK, Yajima S, Asami T (2015) Strigolactone regulates anthocyanin accumulation, acid phosphatases production and plant growth under low phosphate condition in Arabidopsis. PLoS One 10:e0119724

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jiang L, Liu X, Xiong G, Liu H, Chen F, Wang L, Meng X, Liu G, Yu H, Yuan Y, Yi W, Zhao L, Ma H, He Y, Wu Z, Melcher K, Qian Q, Xu HE, Wang Y, Li J (2013) DWARF 53 acts as a repressor of strigolactone signalling in rice. Nature 504:401–405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang L, Matthys C, Marquez-Garcia B, De Cuyper C, Smet L, De Keyser A, Boyer FD, Beeckman T, Depuydt S, Goormachtig S (2016) Strigolactones spatially influence lateral root development through the cytokinin signalling network. J Exp Bot 67:79–89

    Google Scholar 

  • Johnson X, Brcich T, Dun EA, Goussot M, Haurogné K, Beveridge CA, Rameau C (2006) Branching genes are conserved across species. Genes controlling a novel signal in pea are coregulated by other long-distance signals. Plant Physiol 142:1014–1026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kapulnik Y, Delaux PM, Resnick N, Mayzlish-Gati E, Wininger S, Bhattacharya C, Séjalon-Delmas N, Combier JP, Bécard G, Belausov E, Beeckman T, Dor E, Hershenhorn J, Koltai H (2011a) Strigolactones affect lateral root formation and root-hair elongation in Arabidopsis. Planta 233:209–216

    Article  CAS  PubMed  Google Scholar 

  • Kapulnik Y, Resnick N, Mayzlish-Gati E, Kaplan Y, Wininger S, Hershenhorn J, Koltai H (2011b) Strigolactones interact with ethylene and auxin in regulating root-hair elongation in Arabidopsis. J Exp Bot 62:2915–2924

    Article  CAS  PubMed  Google Scholar 

  • Kohlen W, Charnikhova T, Liu Q, Bours R, Domagalska MA, Beguerie S, Verstappen F, Leyser O, Bouwmeester H, Ruyter-Spira C (2011) Strigolactones are transported through the xylem and play a key role in shoot architectural response to phosphate deficiency in nonarbuscular mycorrhizal host Arabidopsis. Plant Physiol 155:974–987

    Article  CAS  PubMed  Google Scholar 

  • Kohlen W, Charnikhova T, Lammers M, Pollina T, Tóth P, Haider I, Pozo MJ, de Maagd RA, Ruyter-Spira C, Bouwmeester HJ, López-Ráez JA (2012) The tomato CAROTENOID CLEAVAGE DIOXYGENASE8 (SlCCD8) regulates rhizosphere signaling, plant architecture and affects reproductive development through strigolactone biosynthesis. New Phytol 196:535–547

    Article  CAS  PubMed  Google Scholar 

  • Koltai H, Dor E, Hershenhorn J, Joel DM, Weininger S, Lekalla S, Shealtiel H, Bhattacharya C, Eliahu E, Resnick N, Barg R, Kapulnik Y (2010) Strigolactones’ effect on root growth and root-hair elongation may be mediated by auxin-efflux carriers. J Plant Growth Regul 29:129–136

    Article  CAS  Google Scholar 

  • Lambers H, Raven JA, Shaver GR, Smith SE (2008) Plant nutrient-acquisition strategies change with soil age. Trends Ecol Evol 23:95–103

    Article  PubMed  Google Scholar 

  • Lanfranco L, Fiorilli V, Venice F, Bonfante P (2018) Strigolactones cross the kingdoms: plants, fungi, and bacteria in the arbuscular mycorrhizal symbiosis. J Exp Bot 69:2175–2188

    Article  CAS  PubMed  Google Scholar 

  • Lantzouni O, Klermund C, Schwechheimer C (2017) Largely additive effects of gibberellin and strigolactone on gene expression in Arabidopsis thaliana seedlings. Plant J 92:924–938

    Article  CAS  PubMed  Google Scholar 

  • Lauressergues D, André O, Peng J, Wen J, Chen R, Ratet P, Tadege M, Mysore KS, Rochange SF (2015) Strigolactones contribute to shoot elongation and to the formation of leaf margin serrations in Medicago truncatula R108. J Exp Bot 66:1237–1244

    Article  CAS  PubMed  Google Scholar 

  • Li S, Chen L, Li Y, Yao R, Wang F, Yang M, Gu M, Nan F, Xie D, Yan J (2016) Effect of GR24 stereoisomers on plant development in Arabidopsis. Mol Plant 9:1432–1435

    Article  CAS  PubMed  Google Scholar 

  • Li W, Nguyen KH, Chu HD, Ha CV, Watanabe Y, Osakabe Y, Leyva-González MA, Sato M, Toyooka K, Voges L, Tanaka M, Mostofa MG, Seki M, Seo M, Yamaguchi S, Nelson DC, Tian C, Herrera-Estrella L, Tran LP (2017) The karrikin receptor KAI2 promotes drought resistance in Arabidopsis thaliana. PLoS Genet 13:e1007076

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liang Y, Ward S, Li P, Bennett T, Leyser O (2016) SMAX1-LIKE7 signals from the nucleus to regulate shoot development in Arabidopsis via partially EAR motif-independent mechanisms. Plant Cell 28:1581–1601

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ligerot Y, de Saint Germain A, Waldie T, Troadec C, Citerne S, Kadakia N, Pillot JP, Prigge M, Aubert G, Bendahmane A, Leyser O, Estelle M, Debellé F, Rameau C (2017) The pea branching RMS2 gene encodes the PsAFB4/5 auxin receptor and is involved in an auxin-strigolactone regulation loop. PLoS Genet 13:e1007089

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Linkohr BI, Williamson LC, Fitter AH, Leyser HM (2002) Nitrate and phosphate availability and distribution have different effects on root system architecture of Arabidopsis. Plant J 29:751–760

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Novero M, Charnikhova T, Ferrandino A, Schubert A, Ruyter-Spira C, Bonfante P, Lovisolo C, Bouwmeester HJ, Cardinale F (2013) CAROTENOID CLEAVAGE DIOXYGENASE 7 modulates plant growth, reproduction, senescence, and determinate nodulation in the model legume Lotus japonicus. J Exp Bot 64:1967–1981

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu J, He H, Vitali M, Visentin I, Charnikhova T, Haider I, Schubert A, Ruyter-Spira C, Bouwmeester HJ, Lovisolo C, Cardinale F (2015) Osmotic stress represses strigolactone biosynthesis in Lotus japonicus roots: exploring the interaction between strigolactones and ABA under abiotic stress. Planta 241:1435–1451

    Article  CAS  PubMed  Google Scholar 

  • Lopez-Raez JA (2016) How drought and salinity affect arbuscular mycorrhizal symbiosis and strigolactone biosynthesis? Planta 243:1375–1385

    Article  CAS  PubMed  Google Scholar 

  • Lopez-Raez JA, Shirasu K, Foo E (2017) Strigolactones in plant interactions with beneficial and detrimental organisms: the Yin and Yang. Trends Plant Sci 22:527–537

    Article  CAS  PubMed  Google Scholar 

  • Luo L, Wang H, Liu X, Hu J, Zhu X, Pan S, Qin R, Wang Y, Zhao P, Fan X, Xu G (2018) Strigolactones affect the translocation of nitrogen in rice. Plant Sci 270:190–197

    Article  CAS  PubMed  Google Scholar 

  • Lv S, Zhang Y, Li C, Liu Z, Yang N, Pan L, Wu J, Wang J, Yang J, Lv Y, Zhang Y, Jiang W, She X, Wang G (2018) Strigolactone-triggered stomatal closure requires hydrogen peroxide synthesis and nitric oxide production in an abscisic acid-independent manner. New Phytol 217:290–304

    Article  CAS  PubMed  Google Scholar 

  • Lynch JP, Brown KM (2001) Topsoil foraging—an architectural adaptation of plants to low phosphorus availability. Plant Soil 237:225–237

    Article  CAS  Google Scholar 

  • Madmon O, Mazuz M, Kumari P, Dam A, Ion A, Mayzlish-Gati E, Belausov E, Wininger S, Abu-Abied M, McErlean CS, Bromhead LJ, Perl-Treves R, Prandi C, Kapulnik Y, Koltai H (2016) Expression of MAX2 under SCARECROW promoter enhances the strigolactone/MAX2 dependent response of Arabidopsis roots to low-phosphate conditions. Planta 243:1419–1427

    Article  CAS  PubMed  Google Scholar 

  • Martín-Trillo M, González-Grandío EG, Serra F, Marcel F, Rodríguez-Buey ML, Schmitz G, Theres K, Bendahmane A, Dopazo H, Cubas P (2011) Role of tomato BRANCHED1-like genes in the control of shoot branching. Plant J 67:701–714

    Article  PubMed  CAS  Google Scholar 

  • Mashiguchi K, Sasaki E, Shimada Y, Nagae M, Ueno K, Nakano T, Yoneyama K, Suzuki Y, Asami T (2009) Feedback-regulation of strigolactone biosynthetic genes and strigolactone-related genes in Arabidopsis. Biosci Biotechnol Biochem 73:2460–2465

    Article  CAS  PubMed  Google Scholar 

  • Mason MG, Ross JJ, Babst BA, Wienclaw BN, Beveridge CA (2014) Sugar demand, not auxin, is the initial regulator of apical dominance. Proc Natl Acad Sci U S A 111:6092–6097

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matthys C, Walton A, Struk S, Stes E, Boyer FD, Gevaert K, Goormachtig S (2016) The whats, the wheres and the hows of strigolactone action in the roots. Planta 243:1327–1337

    Article  CAS  PubMed  Google Scholar 

  • Matusova R, Rani K, Verstappen FWA, Franssen MCR, Beale MH, Bouwmeester HJ (2005) The strigolactone germination stimulants of the plant-parasitic Striga and Orobanche spp. are derived from the carotenoid pathway. Plant Physiol 139:920–934

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mayzlish-Gati E, De-Cuyper C, Goormachtig S, Beeckman T, Vuylsteke M, Brewer PB, Beveridge CA, Yermiyahu U, Kaplan Y, Enzer Y, Wininger S, Resnick N, Cohen M, Kapulnik Y, Koltai H (2012) Strigolactones are involved in root response to low phosphate conditions in Arabidopsis. Plant Physiol 160:1329–1341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Minakuchi K, Kameoka H, Yasuno N, Umehara M, Luo L, Kobayashi K, Hanada A, Ueno K, Asami T, Yamaguchi S et al (2010) FINE CULM1 (FC1) works downstream of strigolactones to inhibit the outgrowth of axillary buds in rice. Plant Cell Physiol 51:1127–1135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mostofa MG, Li W, Nguyen KH, Fujita M, Tran LP (2018) Strigolactones in plant adaptation to abiotic stresses: an emerging avenue of plant research. Plant Cell Environ 41(10):2227–2243

    Article  CAS  PubMed  Google Scholar 

  • Nakamura H, Xue YL, Miyakawa T, Hou F, Qin HM, Fukui K, Shi X, Ito E, Ito S, Park SH, Miyauchi Y, Asano A, Totsuka N, Ueda T, Tanokura M, Asami T (2013) Molecular mechanism of strigolactone perception by DWARF14. Nat Commun 4:2613

    Article  PubMed  CAS  Google Scholar 

  • Nelson DC, Scaffidi A, Dun EA, Waters MT, Flematti GR, Dixon KW, Beveridge CA, Ghisalberti EL, Smith SM (2011) F-box protein MAX2 has dual roles in karrikin and strigolactone signalling in Arabidopsis thaliana. Proc Natl Acad Sci U S A 108:8897–8902

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pandya-Kumar N, Shema R, Kumar M, Mayzlish-Gati E, Levy D, Zemach H, Belausov E, Wininger S, Abu-Abied M, Kapulnik Y, Koltai H (2014) Strigolactone analog GR24 triggers changes in PIN2 polarity, vesicle trafficking and actin filament architecture. New Phytol 202:1184–1196

    Article  CAS  PubMed  Google Scholar 

  • Parniske M (2008) Arbuscular mycorrhiza: the mother of plant root endosymbioses. Nat Rev Microbiol 6:763–775

    Article  CAS  PubMed  Google Scholar 

  • Pasare SA, Ducreux LJM, Morris WL, Campbell R, Sharma SK, Roumeliotis E, Kohlen W, van der Krol S, Bramley PM, Roberts AG et al (2013) The role of the potato (Solanum tuberosum) CCD8 gene in stolon and tuber development. New Phytol 198:1108–1120

    Article  CAS  PubMed  Google Scholar 

  • Prusinkiewicz P, Crawford S, Smith RS, Ljung K, Bennett T, Ongaro V, Leyser O (2009) Control of bud activation by an auxin transport switch. Proc Natl Acad Sci U S A 106:17431–17436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rasmussen A, Mason MG, De Cuyper C, Brewer PB, Herold S, Agusti J, Geelen D, Greb T, Goormachtig S, Beeckman T, Beveridge CA (2012) Strigolactones suppress adventitious rooting in Arabidopsis and pea. Plant Physiol 158:1976–1987

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ruiz-Lozano JM, Aroca R, Zamarreno AM, Molina S, Andreo-Jimenez B, Porcel R, Garcia-Mina JM, Ruyter-Spira C, Lopez-Raez JA (2016) Arbuscular mycorrhizal symbiosis induces strigolactone biosynthesis under drought and improves drought tolerance in lettuce and tomato. Plant Cell Environ 39:441–452

    Article  CAS  PubMed  Google Scholar 

  • Ruyter-Spira C, Kohlen W, Charnikhova T, van Zeijl A, van Bezouwen L, de Ruijter N, Cardoso C, Lopez-Raez JA, Matusova R, Bours R, Verstappen F, Bouwmeester H (2011) Physiological effects of the synthetic strigolactone analog GR24 on root system architecture in Arabidopsis: another belowground role for strigolactones? Plant Physiol 155:721–734

    Article  CAS  PubMed  Google Scholar 

  • Sairam RK, Tyagi A (2004) Physiology and molecular biology of salinity stress tolerance in plants. Curr Sci 86:407–421

    CAS  Google Scholar 

  • Sang D, Chen D, Liu G, Liang Y, Huang L, Meng X, Chu J, Sun X, Dong G, Yuan Y, Qian Q, Li J, Wang Y (2014) Strigolactones regulate rice tiller angle by attenuating shoot gravitropism through inhibiting auxin biosynthesis. Proc Natl Acad Sci U S A 111:11199–11204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scaffidi A, Waters MT, Ghisalberti EL, Dixon KW, Flematti GR, Smith SM (2013) Carlactone-independent seedling morphogenesis in Arabidopsis. Plant J 76:1–9

    CAS  PubMed  Google Scholar 

  • Scaffidi A, Waters MT, Sun YK, Skelton BW, Dixon KW, Ghisalberti EL, Flematti GR, Smith SM (2014) Strigolactone hormones and their stereoisomers signal through two related receptor proteins to induce different physiological responses in Arabidopsis. Plant Physiol 165:1221–1232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seale M, Bennett T, Leyser O (2017) BRC1 expression regulates bud activation potential but is not necessary or sufficient for bud growth inhibition in Arabidopsis. Development 144:1661–1673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shinohara N, Taylor C, Leyser O (2013) Strigolactone can promote or inhibit shoot branching by triggering rapid depletion of the auxin efflux protein PIN1 from the plasma membrane. PLoS Biol 11:e1001474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Simons JL, Napoli CA, Janssen BJ, Plummer KM, Snowden KC (2006) Analysis of the DECREASED APICAL DOMINANCE genes of petunia in the control of axillary branching. Plant Physiol 143:697–706

    Article  PubMed  CAS  Google Scholar 

  • Snowden KC, Simkin AJ, Janssen BJ, Templeton KR, Loucas HM, Simons JL, Karunairetnam S, Gleave AP, Clark DG, Klee HJ (2005) The decreased apical dominance1/Petunia hybrida CAROTENOID CLEAVAGE DIOXYGENASE8 gene affects branch production and plays a role in leaf senescence, root growth, and flower development. Plant Cell 17:746–759

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sorefan K, Booker J, Haurogné K, Goussot M, Bainbridge K, Foo E, Chatfield S, Ward S, Beveridge C, Rameau C, Leyser O (2003) MAX4 and RMS1 are orthologous dioxygenase-like genes that regulate shoot branching in Arabidopsis and pea. Genes Dev 17:1469–1474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Soundappan I, Bennett T, Morffy N, Liang Y, Stanga JP, Abbas A, Leyser O, Nelson D (2015) SMAX1-LIKE/D53 family members enable distinct MAX2-dependent responses to strigolactones and karrikins in Arabidopsis. Plant Cell 27:3143–3159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stirnberg P, Furner IJ, Leyser OHM (2007) MAX2 participates in an SCF complex which acts locally at the node to suppress shoot branching. Plant J 50:80–94

    Article  CAS  PubMed  Google Scholar 

  • Stirnberg P, van De Sande K, Leyser OHM (2002) MAX1 and MAX2 control shoot lateral branching in Arabidopsis. Development 129:1131–1141

    CAS  PubMed  Google Scholar 

  • Sun H, Tao J, Liu S, Huang S, Chen S, Xie X, Yoneyama K, Zhang Y, Xu G (2014) Strigolactones are involved in phosphate- and nitrate-deficiency-induced root development and auxin transport in rice. J Exp Bot 65:6735–6746

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun H, Tao J, Hou M, Huang S, Chen S, Liang Z, Xie T, Wei Y, Xie X, Yoneyama K, Xu G, Zhang Y (2015) A strigolactone signal is required for adventitious root formation in rice. Ann Bot 115:1155–1162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun YK, Flematti GR, Smith SM, Waters MT (2016a) Reporter gene-facilitated detection of compounds in Arabidopsis leaf extracts that activate the karrikin signalling pathway. Front Plant Sci 7:1799

    PubMed  PubMed Central  Google Scholar 

  • Sun H, Tao J, Gu P, Xu G, Zhang Y (2016b) The role of strigolactones in root development. Plant Signal Behav 11:e1110662

    Article  PubMed  CAS  Google Scholar 

  • Sun H, Bi Y, Tao J, Huang S, Hou M, Xue R, Liang Z, Gu P, Yoneyama K, Xie X, Shen Q, Xu G, Zhang Y (2016c) Strigolactones are required for nitric oxide to induce root elongation in response to nitrogen and phosphate deficiencies in rice. Plant Cell Environ 39:1473–1484

    Article  CAS  PubMed  Google Scholar 

  • Taniguchi M, Furutani M, Nishimura T, Nakamura M, Fushita T, Iijima K, Baba K, Tanaka H, Toyota M, Tasaka M, Morita MT (2017) The Arabidopsis LAZY1 family plays a key role in gravity signalling within statocytes and in branch angle control of roots and shoots. Plant Cell 29:1984–1999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tilman D, Cassman KG, Matson PA, Naylor R, Polasky S (2002) Agricultural sustainability and intensive production practices. Nature 418:671–677

    Article  CAS  PubMed  Google Scholar 

  • Torres-Vera R, Garcia JM, Pozo MJ, López-Ráez JA (2013) Do strigolactones contribute to plant defence? Mol Plant Pathol 15:211–216

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Ueda H, Kusaba M (2015) Strigolactone regulates leaf senescence in concert with ethylene in Arabidopsis. Plant Physiol 169:138–147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Umehara M, Hanada A, Yoshida S, Akiyama K, Arite T, Takeda-Kamiya N, Magome H, Kamiya Y, Shirasu K, Yoneyama K, Kyozuka J, Yamaguchi S (2008) Inhibition of shoot branching by new terpenoid plant hormones. Nature 455:195–200

    Article  CAS  PubMed  Google Scholar 

  • Umehara M, Hanada A, Magome H, Takeda-Kamiya N, Yamaguchi S (2010) Contribution of strigolactones to the inhibition of tiller bud outgrowth under phosphate deficiency in rice. Plant Cell Physiol 51:1118–1126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Visentin I, Vitali M, Ferrero M, Zhang Y, Ruyter-Spira C, Novák O, Strnad M, Lovisolo C, Schubert A, Cardinale F (2016) Low levels of strigolactones in roots as a component of the systemic signal of drought stress in tomato. New Phytol 212:954–963

    Article  CAS  PubMed  Google Scholar 

  • Vogel JT, Walter MH, Giavalisco P, Lytovchenko A, Kohlen W, Charnikhova T, Simkin AJ, Goulet C, Strack D, Bouwmeester HJ, Fernie AR, Klee HJ (2010) SlCCD7 controls strigolactone biosynthesis, shoot branching and mycorrhiza-induced apocarotenoid formation in tomato. Plant J 61:300–311

    Article  CAS  PubMed  Google Scholar 

  • Waldie T, McCulloch H, Leyser O (2014) Strigolactones and the control of plant development: lessons from shoot branching. Plant J 79:607–622

    Article  CAS  PubMed  Google Scholar 

  • Walker CH, Bennett T (2017) Reassessing the evolution of strigolactone synthesis and signalling. BioRxiv:228320. https://doi.org/10.1101/228320

  • Walton A, Stes E, Goeminne G, Braem L, Vuylsteke M, Matthys C, De Cuyper C, Staes A, Vandenbussche J, Boyer FD, Vanholme R, Fromentin J, Boerjan W, Gevaert K, Goormachtig S (2016) The response of the root proteome to the synthetic strigolactone GR24 in Arabidopsis. Mol Cell Proteomics 15:2744–2755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wallner ES, López-Salmerón V, Greb T (2016) Strigolactone versus gibberellin signalling: reemerging concepts? Planta 243:1339–1350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang L, Wang B, Jiang L, Liu X, Li X, Lu Z, Meng X, Wang Y, Smith SM, Li J (2015) Strigolactone signaling in Arabidopsis regulates shoot development by targeting D53-like SMXL repressor proteins for ubiquitination and degradation. Plant Cell 27:3128–3142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Sun S, Zhu W, Jia K, Yang H, Wang X (2013) Strigolactone/MAX2-induced degradation of brassinosteroid transcriptional effector BES1 regulates shoot branching. Dev Cell 27:681–688

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Li J (2011) Branching in rice. Curr Opin Plant Biol 14:94–99

    Article  CAS  PubMed  Google Scholar 

  • Waters MT, Gutjahr C, Bennett T, Nelson D (2017) Strigolactone signalling and evolution. Annu Rev Plant Biol 68:291–322

    Article  CAS  PubMed  Google Scholar 

  • Waters MT, Nelson DC, Scaffidi A, Flematti GR, Sun YK, Dixon KW, Smith SM (2012) Specialisation within the DWARF14 protein family confers distinct responses to karrikins and strigolactones in Arabidopsis. Development 139:1285–1295

    Article  CAS  PubMed  Google Scholar 

  • Yamada Y, Furusawa S, Nagasaka S, Shimomura K, Yamaguchi S, Umehara M (2014) Strigolactone signalling regulates rice leaf senescence in response to a phosphate deficiency. Planta 240:399–408

    Article  CAS  PubMed  Google Scholar 

  • Yoneyama K, Xie X, Kim HI, Kisugi T, Nomura T, Sekimoto H, Yokota T (2012) How do nitrogen and phosphorus deficiencies affect strigolactone production and exudation? Planta 235:1197–1207

    Article  CAS  PubMed  Google Scholar 

  • Young NF, Ferguson BJ, Antoniadi I, Bennett MH, Beveridge CA, Turnbull CG (2014) Conditional auxin response and differential cytokinin profiles in shoot branching mutants. Plant Physiol 165:1723–1736

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu J, Zha M, Li Y, Ding Y, Chen L, Ding C, Wang S (2015) The interaction between nitrogen availability and auxin, cytokinin, and strigolactone in the control of shoot branching in rice (Oryza sativa L.). Plant Cell Rep 34:1647–1662

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Lv S, Wang G (2018) Strigolactones are common regulators in induction of stomatal closure in planta. Plant Signal Behav 23:e1444322

    Article  CAS  Google Scholar 

  • Zhou F, Lin Q, Zhu L, Ren Y, Zhou K, Shabek N, Wu F, Mao H, Dong W, Gan L, Ma W, Gao H, Chen J, Yang C, Wang D, Tan J, Zhang X, Guo X, Wang J, Jiang L, Liu X, Chen W, Chu J, Yan C, Ueno K, Ito S, Asami T, Cheng Z, Wang J, Lei C, Zhai H, Wu C, Wang H, Zheng N, Wan J (2013) D14-SCF(D3)-dependent degradation of D53 regulates strigolactone signalling. Nature 504:406–410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zou J, Zhang S, Zhang W, Li G, Chen Z, Zhai W, Zhao X, Pan X, Xie Q, Zhu L (2006) The rice HIGH-TILLERING DWARF1 encoding an ortholog of Arabidopsis MAX3 is required for negative regulation of the outgrowth of axillary buds. Plant J 48:687–698

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pilar Cubas .

Editor information

Editors and Affiliations

Glossary

Abscisic acid (ABA)

Carotenoid-derived phytohormone that regulates many aspects of plant growth, development and cellular signalling. ABA controls seed dormancy, seed maturation, vegetative growth and responses to various environmental stimuli such as stomatal closure during drought.

Acclimation

Relatively fast and reversible changes that individual organisms undergo in response to environmental changes.

Adaptation

Evolutionary process that affects species (or groups of individuals) and leads to better fitting to the habitat via genetic, physical and chemical adjustments.

Amyloplasts

Organelles found in some plant cells responsible for the synthesis and storage of starch granules, through the polymerization of glucose. Sedimentation of amyloplasts is associated with gravity perception in specialized gravity-sensing cells.

Anthocyanins

Plant pigments of the flavonoid family synthesized via the phenylpropanoid pathway. They are found in all tissues of higher plants. Depending on cellular pH, anthocyanins may appear red, purple or blue.

Apical dominance

Phenomenon whereby actively growing ‘dominant’ shoot branches prevent the outgrowth of new branches. Removal of the apices of dominant shoots allows the outgrowth of previously inhibited branches.

Arbuscular mycorrhiza

Type of mycorrhiza in which the symbiotic fungus (AM fungi or AMF) penetrates into plant cells and forms characteristic exchange bodies known as arbuscles.

Auxins

Phytohormone with a huge array of roles in the coordination of plant growth and development. Endogenous auxin is indole-3-acetic acid, but a range of additional auxin-like molecules and synthetic auxin analogues with related structures also exist.

Brassinosteroids

Polyhydroxysteroid phytohormones. They promote stem elongation, cell division, root development and stress responses. Brassinolide is the most common brassinosteroid.

Cambium

Vascular-associated tissue layer that can undergo divisions to allow the radial expansion of plant tissues (‘secondary growth’).

Crosstalk

Interaction of signal transduction pathways.

Cytokinins (CKs)

Class of phytohormones with a range of structural forms. Cytokinins act as both root-to-shoot and shoot-to-root signals and are involved in various aspects of development including promoting shoot branching, inhibiting leaf senescence and promoting meristematic activity.

Ethylene

Gaseous hydrocarbon with the formula H2C=CH2. It is a natural phytohormone that stimulates fruit ripening, flower opening and abscission (or shedding) of leaves. It is also used in agriculture to promote ripening of certain fruits.

Flowering time

The time taken for a flowering plant to pass through the vegetative phase and enter the reproductive phase. Typically measured either in absolute time or as number of nodes a plant produces before formation of the first flower.

Gibberellic acid (GA)

Phytohormone involved in breaking seed dormancy, promoting seed development, stimulating stem and root growth, inducing mitotic division in the leaves of some plants and promoting vegetative and floral growth.

Gravitropism

Process of differential growth in response to gravity. It is a general feature of all plants. Roots show positive gravitropism (i.e. they grow in the direction of gravitational vector, i.e. downwards), while stems show negative gravitropism.

Karrikins

Butenolide compounds found in the smoke of burnt plant material, which act as plant growth regulators and stimulate the germination of seeds. Karrikins act through the KAI2 receptor but are not an endogenous ligand for KAI2 (KAI2-ligand, KL).

Meristems

Specialized areas of tissue in which the vast majority of cell divisions in plant occur. Meristems generate new cells that allow the growth of the plant in various dimensions. In flowering plants, the embryonic root and shoot apical meristems give rise to the entire root and shoot system, respectively. Axillary meristems are secondary shoot meristems formed in the leaf axils. Cambial meristems are responsible for the radial growth and thickening of the stem.

Mycorrhiza

Symbiotic association between a fungus and a plant. Mycorrhizas play important roles in soil biology and soil chemistry. Mycorrhizas may involve colonization of the extracellular space (ectomycorrhizas) or intracellular colonization (arbuscular mycorrhizas). The association is generally mutualistic, but in particular species or in particular circumstances, either partner can parasitize the other.

Nitrogen fixation

Nitrogen fixation is a process by which atmospheric nitrogen (N2) is converted into ammonia or other organic molecules. Nitrogen fixation is carried out naturally in the soil by nitrogen-fixing bacteria. Certain nitrogen-fixing bacteria have symbiotic relationships with plant groups. Especially notable is the association between legumes (Fabaceae) and Rhizobia spp.

Nodulation

In legumes, root nodules are specialized structures that host the symbiotic nitrogen-fixing bacteria. They are typically formed under nitrogen-limited conditions.

Osmotic pressure

Minimum pressure required to be applied to a solution to prevent the inward flow of its pure solvent across a semipermeable membrane. It is also defined as the measure of the tendency of a solution to take in pure solvent by osmosis. This process is of vital importance in biology as the cell’s membrane is semipermeable.

Plant phenotypic plasticity

The ability of a plant genotype to generate different phenotypes in response to varying environmental conditions.

Phloem

Vascular plant tissue that transports the soluble organic compounds made during photosynthesis, photosynthates, in particular sucrose, to parts of the plant where needed.

Racemic-GR24 (rac-GR24)

One of the most commonly used synthetic strigolactone analogues.

Rhizobia

Bacteria that fix nitrogen after becoming established inside root nodules of legumes (Fabaceae).

Rhizosphere

The soil surrounding and directly influenced by plant roots.

RNA interference (RNAi)

Biological process in which RNA molecules inhibit gene expression or translation, by neutralizing targeted mRNA molecules. The generation of RNAi transgenic lines is an approach commonly used in plant research to cause precise and efficient gene suppression (knock-down).

Root exudates

Chemicals that are exported by the roots into the rhizosphere, which play a variety of roles in communication with microorganisms and manipulation of the physical and chemical properties of the soil.

Senescence

A process of deliberate organ breakdown, allowing recycling of nutrients to growing and storage organs of the plant. Senescence typically occurs in older organs, to fuel the development of new organs. Senescence may be increased under stress conditions.

Stolons

Stems, often called runners, which grow at the soil surface or just below ground that form adventitious roots at the nodes and new plants from the buds. They support vegetative propagation.

Stomata

Pores found in the plant epidermis that facilitate gas exchange. They are bordered by a pair of specialized epidermal cells known as guard cells that are responsible for regulating the size of the stomatal opening.

Stomatal conductance

It is the measure of the rate of passage of gases through the stomata of a leaf, mostly carbon dioxide entering, and water vapour exiting through the stomata of a leaf. It is directly related to the absolute concentration gradient of water vapour from the leaf to the atmosphere.

Tuberization

The process by which some plant species develop tubers, enlarged modified stems used as underground storage organs for nutrients.

Vasculature

Continuous tissue system that allow transport of water and nutrients around the plant body. There are two main types of vascular element, xylem and phloem. Vascular elements typically occur in ‘vascular bundles’, which also include supporting and protective tissues.

Xylem

One of the two types of transport tissue in vascular plants. Its main function is to transport water and mineral nutrients from roots to shoots and leaves.

Water potential

Potential energy of water per unit volume relative to pure water in reference conditions.

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rameau, C., Goormachtig, S., Cardinale, F., Bennett, T., Cubas, P. (2019). Strigolactones as Plant Hormones. In: Koltai, H., Prandi, C. (eds) Strigolactones - Biology and Applications. Springer, Cham. https://doi.org/10.1007/978-3-030-12153-2_2

Download citation

Publish with us

Policies and ethics