Skip to main content

Dynamics of Solitons in High-Order Nonlinear Schrödinger Equations in Fiber Optics

  • Chapter
  • First Online:
Mathematics Applied to Engineering, Modelling, and Social Issues

Part of the book series: Studies in Systems, Decision and Control ((SSDC,volume 200))

  • 764 Accesses

Abstract

In optical fibers, the higher order nonlinear Schrödinger equation (NLSE) with cubic-quintic nonlinearity describes the propagation of extremely short pulses. We construct kink, bright and dark solitons of a generalized higher order NLSE in a cubic-quintic non-Kerr medium by applying proposed modified extended mapping method. These obtained solutions have key applications in physical science and engineering. Moreover, we also present the formation conditions on solitary wave parameters in which kink, dark and bright solitons can exist for this media. We graphically illustrate the collision of the constructed soliton solutions that help realize the physical phenomena of NLSE. We also outline descriptions of various issues on integrability. We discuss the stability of the model in normal dispersion and anomalous regime by using the modulation instability analysis. Many other types of such models arising in applied sciences can also be solved by these reliable, powerful and effective methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Akhmediev, N.N., Ankiewicz, A.: Solitons, Nonlinear Pulses and Beams. Chapman and Hall, London (1997)

    MATH  Google Scholar 

  2. Kivshar, Y.S., Agrawal, G.P.: Optical Solitons: From Fibers to Photonic Crystals. Academic Press, San Diego (2003)

    Google Scholar 

  3. Hasegawa, A.: Optical Solitons in Fibers. Springer-Verlag, Berlin (1989)

    Google Scholar 

  4. Hasegawa, A., Kodama, Y.: Solitons in Optical Communications. Clarendon Press, Oxford (1995)

    MATH  Google Scholar 

  5. Hasegawa, A., Tappert, F.: Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers. I. Anomalous dispersion. Appl. Phys. Lett. 23(3), 142–144 (1973)

    Google Scholar 

  6. Hasegawa, A., Tappert, F.: Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers. II. Normal dispersion. Appl. Phys. Lett. 23(4), 171–172 (1973)

    Google Scholar 

  7. Mollenauer, L.F., Stolen, R.H., Gordon, J.P.: Experimental observation of picosecond pulse narrowing and solitons in optical fibers. Phys. Rev. Lett. 45, 1095 (1980)

    Google Scholar 

  8. Porsezian, K., Nakkeeran, K.: Optical soliton propagation in an erbium doped nonlinear light guide with higher order dispersion. Phys. Rev. Lett. 74, 2941 (1995)

    Google Scholar 

  9. Chaohao, G. (ed.): Soliton Theory and its Applications. Springer, Hangzhou, Germany (1990)

    Google Scholar 

  10. Belashov, V.Y., Vladimirov, S.V.: Solitary Waves in Dispersive Complex Media. Springer-Verlag, Berlin (2004)

    MATH  Google Scholar 

  11. Solli, D.R., Ropers, C., Koonath, P., Jalali, B.: Optical rogue waves. Nature 450, 1054–1057 (2007)

    Google Scholar 

  12. Yomba, E., Zakeri, G.A.: Rogue-pair and dark-bright-rogue waves of the coupled nonlinear Schrödinger equations from inhomogeneous femtosecond optical fibers. Chaos 26, 083115 (2016)

    MathSciNet  MATH  Google Scholar 

  13. Akhmediev, N., Dudley, J.M., Solli, D.R., Turitsyn, S.K.: Recent progress in investigating optical rogue waves. J. Opt. 15, 060201 (2013). (in Special issue on optical rogue waves in Journal of Optics)

    Google Scholar 

  14. Akhmediev, N., (and 37 other authors): Roadmap on optical rogue waves and extreme events. J. Opt. 18, 063001 (2016)

    Google Scholar 

  15. Hao, R., Li, L., Li, Z., Yang, R., Zhou, G.: A new way to exact quasi-soliton solutions and soliton interaction for the cubic-quintic nonlinear Schrödinger equation with variable coefficients. Opt. Commun. 245, 383–390 (2005)

    Google Scholar 

  16. Rodas-Verde, M.I., Michinel, H., Paez-Grca, V.M.: Controllable soliton emission from a Bose-Einstein condensate. Phys. Rev. Lett. 95, 153903 (2005)

    Google Scholar 

  17. Ogusu, K., Yamasaki, J., Maeda, S., Kitao, M., Minakata, M.: Linear and nonlinear optical properties of Ag-As-Se chalcogenide glasses for all-optical switching. Opt. Lett. 29, 265–267 (2004)

    Google Scholar 

  18. Abdullaeev, F.: Theory of Solitons in Inhomogeneous Media. Wiley & sons, New York (1994)

    Google Scholar 

  19. Senthilnathan, K., Abobaker, A.M., Nakkeeran, K.: In: Proceedings of Progress in Electromagnetics Research Symposium, PIERS, p. 1396 (2009)

    Google Scholar 

  20. Dai, C.Q., Wang, Y.Y., Wang, X.G.: Ultrashort self-similar solutions of the cubic-quintic nonlinear Schrödinger equation with distributed coefficients in the inhomogeneous fiber. J. Phys. A: Math. Theor. 44, 155203 (2011)

    MATH  Google Scholar 

  21. Zakeri, G.A., Yomba, E.: Stable solitary-waves in a higher order generalized nonlinear Schrödinger equation with space- and time-variable coefficients. AIP Conf. Proc. 1562, 223 (2013)

    MATH  Google Scholar 

  22. Zakeri, G.A., Yomba, E.: Dissipative solitons in a generalized coupled cubic-quintic Ginzburg-Landau equations. J. Phys. Soc. Jpn. 82, 084002 (2013)

    Google Scholar 

  23. Yomba, E., Zakeri, G.A.: Solitons in a generalized space- and time-variable coefficients nonlinear Schrödinger equation with higher-order terms. Phys. Lett. A 377, 2995–3004 (2013)

    MathSciNet  MATH  Google Scholar 

  24. Yomba, E., Zakeri, G.A.: Dynamics of wide and snake-like pulses in coupled Schrödinger equations with full-modulated nonlinearities. Phys. Lett. A 380, 530–539 (2016)

    MathSciNet  MATH  Google Scholar 

  25. Peleg, A., Nguyen, Q.M., Chung, Y.: Cross-talk dynamics of optical solitons in a broadband Kerr nonlinear system with weak cubic loss. Phys. Rev. A 82, 053830 (2010)

    Google Scholar 

  26. Peleg, A., Chung, Y.: Cross-talk dynamics of optical solitons in multichannel waveguide systems with a Ginzburg-Landau gain-loss profile. Phys. Rev. A 85, 063828 (2012) (Erratum. Phys. Rev. A 88, 049904 (2013))

    Google Scholar 

  27. Mertens, F.G., Quintero, N.R., Bishop, A.R.: Nonlinear Schrödinger equation with spatiotemporal perturbations. Phys. Rev. E 81, 016608 (2010)

    Google Scholar 

  28. Hoseini, S.M., Marchant, T.R.: Evolution of solitary waves for a perturbed nonlinear Schrödinger equation. Appl. Math. Comput. 216, 3642–3651 (2010)

    MathSciNet  MATH  Google Scholar 

  29. Vuillon, L., Dutykh, D., Fedele, F.: Some special solutions to the Hyperbolic NLS equation. Commun. Nonlinear Sci. Numer. Simulat. 57, 202–220 (2018)

    MathSciNet  MATH  Google Scholar 

  30. Quintero, N.R., Mertens, F.G., Bishop, A.R.: Generalized traveling-wave method, variational approach, and modified conserved quantities for the perturbed nonlinear Schrdinger equation. Phys. Rev. E 82, 016606 (2010)

    MathSciNet  Google Scholar 

  31. Kartashov, Y.V., Malomed, B.A., Torner, L.: Solitons in nonlinear lattices. Rev. Modern Phys. 83, 247–305 (2011)

    Google Scholar 

  32. Collin, A., Massingnan, P., Pethick, C.J.: Energy-dependent effective interactions for dilute many-body systems. Phys. Rev. A 75, 013615 (2007)

    Google Scholar 

  33. Tie, L., Xue, J.-K.: Tunneling dynamics of Bose-Einstein condensates with higher-order interactions in optical lattice. Chin. Phys. B 20, 120311 (2011)

    Google Scholar 

  34. Wamba, E., Porsezian, K., Mohamadou, A., Kofané, T.C.: Instability domain of Bose-Einstein condensates with quantum fluctuations and three-body interactions. Phys. Lett. A 377, 262 (2013)

    MATH  Google Scholar 

  35. Gardner, C.G., Green, J.M., Kruskal, M.D., Miura, R.M.: Method for solving the Korteweg-de Vries equation. Phys. Rev. Lett. 19, 1095–1097 (1967)

    MATH  Google Scholar 

  36. Lax, P.: Integrals of nonlinear equations of evolution and solitary waves. Comm. Pure. Appl. Math. 21(5), 467–490 (1976)

    MathSciNet  MATH  Google Scholar 

  37. Zakharov, V.E., Shabat, A.B.: A scheme for integrating the nonlinear equations of mathematical physics by the method of the inverse scattering problem. Func. Annal. Appl. 8(3), 226–235 (1974)

    MATH  Google Scholar 

  38. Newell, A.C.: Solitons in Mathematics and Physics. SIAM, Philadelphia (1985)

    MATH  Google Scholar 

  39. Bracken, P.: Integrable systems of partial differential equations (PDE) determined by structure equations and Lax pair. Phys. Lett. A 374, 501–503 (2010)

    MathSciNet  MATH  Google Scholar 

  40. Mel’nikov, V.K.: New method for deriving nonlinear integrable systems. J. Math. Phys. 31, 1106 (1990)

    MathSciNet  MATH  Google Scholar 

  41. Mikhailov, A.V. (ed.): Integrability. In: Lecture Notes in Physics, vol. 767. Springer-Verlag, Berlin (2008)

    Google Scholar 

  42. Fokas, A.S.: Symmetries and integrability. Stud. Appl. Math. 77, 253 (1987)

    MathSciNet  MATH  Google Scholar 

  43. Wadati, M., Sanuki, H., Konno, K.: Relationships among inverse method, Bäcklund transformation and an infinite number of conservation laws. Prog. Theor. Phys. 53, 419–436 (1975)

    MATH  Google Scholar 

  44. Chai, J., Tian, B., Zhen, H.L., Sun, W.R.: Conservation laws, bilinear forms and solitons for a fifth-order nonlinear Schrödinger equation for the attosecond pulses in an optical fiber. Annal. Phys. 359, 371–384 (2015)

    MATH  Google Scholar 

  45. Lin, J., Ren, B., Li, H.M., Li, Y.S.: Soliton solutions for two nonlinear partial differential equations using a Darboux transformation of the Lax pairs. Phys. Rev. E 77, 036605 (2008)

    MathSciNet  Google Scholar 

  46. Kundu, A.: Integrable nonautonomous nonlinear Schrödinger equations are equivalent to the standard autonomous equation. Phys. Rev. E 79, 015601 (2009)

    MathSciNet  Google Scholar 

  47. Vinoj, M.N., Kuriakose, V.C.: Multisoliton solutions and integrability aspects of coupled higher-order nonlinear Schrödinger equations. Phys. Rev. E 62, 036605 (2000)

    Google Scholar 

  48. Tao, Y.S., He, J.S.: Multisolitons, breathers, and rogue waves for the Hirota equation generated by the Darboux transformation. Phys. Rev. E 85, 026601 (2012)

    Google Scholar 

  49. Priya, N.V., Senthilvelan, M.: Generalized Darboux transformation and N-th order rogue wave solution of a general coupled nonlinear Schrödinger equations. Comm. Nonlinear Sci. Numeric. Simulat. 20, 401–420 (2015)

    MATH  Google Scholar 

  50. Whitham, G.B.: Linear and Nonlinear Waves. Wiley & sons, London (1974)

    MATH  Google Scholar 

  51. Chen, A., Li, X.: Soliton solutions of the coupled dispersion-less equation. Phys. Lett. A 370, 281–286 (2007)

    MathSciNet  MATH  Google Scholar 

  52. Gutkin, E.: Conservation laws for the nonlinear Schrödinger equation. Annales de l’Institut Henri Poincare (C) Non Linear Analysis 2, 67–74 (1985)

    Google Scholar 

  53. Kim, J., Park, Q.H., Shin, H.J.: Conservation laws in higher-order nonlinear Schrödinger equations. Phys. Rev. E 58, 6746 (1998)

    MathSciNet  Google Scholar 

  54. Li, M., Tian, B., Liu, W.J., Sun, K., Jiang, Y., Sun, Z.Y.: Conservation laws and soliton solutions for a nonlinear Schrödinger equation with self-consistent sources in plasmas. Phys. Scr. 81, 1–10 (2010)

    MATH  Google Scholar 

  55. De Nicola, S.: Conservation laws for the non-linear Schrödinger equation. Pure Appl. Opt. J. Eur. Opt. Soc. Part A 2, 5 (1993)

    Google Scholar 

  56. Bindu, S.G., Mahalingam, A., Porsezian, K.: Dark soliton solutions of the coupled Hirota equation in nonlinear fiber. Phys. Lett. A 286, 321–331 (2001)

    MathSciNet  MATH  Google Scholar 

  57. Tagal, R.S., Potasek, M.J.: Soliton solutions to coupled higher-order nonlinear Schrödinger equations. J. Math. Phys. 33, 1208–1215 (1992)

    MathSciNet  Google Scholar 

  58. Xu, T., Chen, Y.: Darboux transformation of the coupled nonisospectral Gross-Pitaevskii sysytem and its multi-component generalization. Commun. Nonlinear Sci. Numer. Simulat. 57, 276–239 (2018)

    MATH  Google Scholar 

  59. Sabbah, Y.H., Al Khawaja, U., Vinayagam, P.S.: Lax pair and new exact solutions of the nonlinear Dirac. Commun. Nonlinear Sci. Numer. Simulat. 61, 167–179 (2018)

    MathSciNet  MATH  Google Scholar 

  60. He, J., Xu, S., Porsezian, K.: N-order bright and dark rogue waves in a resonant erbium-doped fiber system. Phys. Rev. E 86, 066603 (2012)

    Google Scholar 

  61. Weiss, J., Tabor, M., Carnevale, G.: The Painlevé property for partial differential equations. J. Math. Phys. 24, 522–526 (1983)

    MathSciNet  MATH  Google Scholar 

  62. Chang, Y.F., Tabor, M., Weiss, J.: Analytic structure of the Henon-Heiles Hamiltonian in integrable and nonintegrable regimes. J. Math. Phys. 23, 531 (1982)

    MathSciNet  MATH  Google Scholar 

  63. Xu, G.Q., Deng, S.F.: Painlevé analysis, integrability and exact solutions for a (2+1)-dimensoinal generalized Nizhnik-Novikov-Veselov equation. Eur. Phys. J. Plus 131, 385 (2016)

    Google Scholar 

  64. Olver, P.J.: Applications of Lie Groups to Differential Equations. Springer, New York (1993)

    MATH  Google Scholar 

  65. Hirota, R.: Exact solution of the Korteweg-de Vries equation for multiple collisions of solitons. Phys. Rev. Lett. 27, 1192 (1971)

    MATH  Google Scholar 

  66. Matveev, V.B., Salle, M.A.: Darboux Transformations and Solitons. Springer, Berlin (1991)

    MATH  Google Scholar 

  67. Gu, C.H., Hu, H.S., Zhou, Z.X.: Darboux Transformations in Integrable Systems: Theory and their Applications to Geometry. Springer-Verlag, New York (2005)

    MATH  Google Scholar 

  68. Zheng, Z., He, J.S., Cheng, Y.: Bäcklund transformation of the noncommutative Gelfand-Dickey hierarchy. J. High Energy Phys. 02, 069 (2004)

    Google Scholar 

  69. Conte, R., Mussette, M.: The Painlevé Handbook. Springer, Dordrecht, the Netherlands (2008)

    Google Scholar 

  70. Yomba, E., Zakeri, G.A.: N-soliton interactions in an extended Schrödinger equation with higher order of nonlinearities. Phys. B 483, 26–36 (2016)

    Google Scholar 

  71. Yomba, E., Zakeri, G.A.: Collision of N-solitons in a fifth nonlinear Schrödinger equation. Wave Motion 72, 101–112 (2017)

    MathSciNet  MATH  Google Scholar 

  72. Palacios, S.L., Fernández-Diáz, J.M.: Black optical solitons for media with parabolic nonlinearity law in the presence of fourth order dispersion. Opt. Commun. 178, 457–460 (2000)

    Google Scholar 

  73. Daniel, M., Kavitha, L.: Magnetization reversal through soliton flip in a biquadratic ferromagnet with varying exchange interactions. Phys. Rev. B 66, 184433 (2002)

    Google Scholar 

  74. Zakharov, V.E., Ostrovsky, L.A.: Modulation instability: the beginning. Physica D: Nonlinear Phenomena 238(5), 540–548 (2009)

    MathSciNet  MATH  Google Scholar 

  75. Zakeri, G.A., Yomba, E.: Solitons in multi-body interactions for a fully modulated cubic-quintic Gross-Pitarvskii equation. Appl. Math. Model. 56, 1–14 (2018)

    MathSciNet  MATH  Google Scholar 

  76. Zakeri, G.A., Yomba, E.: Modulational instability regions for coupled Ginzburg-Landau equations with higher order of nonlinearities. Phys. Rev. E 91, 062904 (2015)

    MathSciNet  Google Scholar 

  77. Zakeri, G.A., Yomba, E.: Vector solitons in an extended coupled Schrödinger equations with modulated nonlinearities. Commun. Nonlinear Sci. Numer. Simulat. 30, 344–359 (2016)

    MATH  Google Scholar 

  78. Yang, J.: Nonlinear Waves in Integrable and Nonintegrable Systems. SIAM, Philadelphia (2010)

    MATH  Google Scholar 

  79. Courant, R., Hilbert, D.: Methods of Mathematical Physics. Wiley and Sons, New Youk (1989)

    MATH  Google Scholar 

  80. Nath, D., Roy, B., Roychoudhury, R.: Periodic waves and their stability in competing cubic-quintic nonlinearity. Opt. Commun. 393, 224–231 (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gholam-Ali Zakeri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zakeri, GA. (2019). Dynamics of Solitons in High-Order Nonlinear Schrödinger Equations in Fiber Optics. In: Smith, F.T., Dutta, H., Mordeson, J.N. (eds) Mathematics Applied to Engineering, Modelling, and Social Issues. Studies in Systems, Decision and Control, vol 200. Springer, Cham. https://doi.org/10.1007/978-3-030-12232-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-12232-4_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-12231-7

  • Online ISBN: 978-3-030-12232-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics