Skip to main content

Lasers in Periodontal Surgery

  • Chapter
Advances in Periodontal Surgery

Abstract

Since their introduction in periodontology in the 1980s, lasers have been recognized for having a number of advantages over conventional surgical methods, including control of bleeding, reduced need for sutures, and decreased postoperative edema and discomfort. Adherence to proper operational parameters and clinical technique help ensure optimal clinical results in such procedures as gingivectomy, frenectomy, biopsy, fibroma removal, and second-stage recovery of implants. Various laser types and treatment protocols have provided minimally invasive approaches to treating periodontal disease, including bacterial reduction, sulcular debridement, removal of calculus, and de-epithelialization. One particular well-defined treatment protocol, the digitally pulsed Nd:YAG laser-based LANAP procedure, has been shown through human histological investigations to achieve true regeneration of the attachment apparatus on a previously diseased root surface. Lasers also have applications in the treatment of periimplantitis such as decontamination of implant surfaces and degranulation of infected sites. The digitally pulsed Nd:YAG laser-based LAPIP protocol has demonstrated control of infection, reversal of bone loss, and rescue of affected implants, in a minimally invasive manner. Whether as stand-alone or adjunctive instruments, lasers have become essential and patient-preferred tools for many general practitioners and specialists alike.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Maiman TH (1960) Stimulated optical emission in ruby. Nature 187(4736):493–494

    Google Scholar 

  2. Atkinson TJ (1997) Fundamentals of the carbon dioxide laser. Chapter 5. In: Catone GA, Alling CC III (eds) Laser applications in oral and maxillofacial surgery. W.B. Saunders, Philadelphia, PA, p 87

    Google Scholar 

  3. Ball KA (2004) Lasers: the perioperative challenge. AORN, Inc., Denver, CO, p 17

    Google Scholar 

  4. Anders JJ, Lanzafame RJ, Arany PR (2015) Low-level light/laser therapy versus photobiomodulation therapy. Photomed Laser Surg 33(4):183–184

    PubMed  PubMed Central  Google Scholar 

  5. White JM, Goodis HE, Rose CL (1991) Use of the pulsed Nd:YAG laser for intraoral soft tissue surgery. Lasers Surg Med 11(5):455–461

    PubMed  Google Scholar 

  6. To TN, Rabie AB, Wong RW, McGrath CP (2013) The adjunct effectiveness of diode laser gingivectomy in maintaining periodontal health during orthodontic treatment. Angle Orthod 83(1):43–47

    PubMed  Google Scholar 

  7. Gabrić Pandurić D, Blašković M, Brozović J, Sušić M (2014) Surgical treatment of excessive gingival display using lip repositioning technique and laser gingivectomy as an alternative to orthognathic surgery. J Oral Maxillofac Surg 72(2):404.e1–404e11

    Google Scholar 

  8. Pick RM, Pecaro BC, Silberman CJ (1985) The laser gingivectomy. The use of the CO2 laser for the removal of phenytoin hyperplasia. J Periodontol 56(8):492–496

    PubMed  Google Scholar 

  9. Gama SK, De Araújo TM, Pozza DH, Pinheiro AL (2007) Use of the CO2 laser on ortho-dontic patients suffering from gingival hyperplasia. Photomed Laser Surg 25(3):214–219

    Google Scholar 

  10. Inchingolo F, Tatullo M, Abenavoli FM, Marrelli M, Inchingolo AD, Inchingolo AM, Dipalma G (2010) Comparison between traditional surgery, CO2 and Nd:Yag laser treatment for generalized gingival hyperplasia in Sturge-Weber syndrome: a retrospective study. J Investig Clin Dent 1(2):85–89

    PubMed  Google Scholar 

  11. Amaral MB, de Ávila JM, Abreu MH, Mesquita RA (2015) Diode laser surgery versus scalpel surgery in the treatment of fibrous hyperplasia: a randomized clinical trial. Int J Oral Maxillofac Surg 44(11):1383–1389

    PubMed  Google Scholar 

  12. Epstein SR (1991) The frenectomy: a comparison of classic versus laser technique. Pract Periodontics Aesthet Dent 3(5):27–30

    PubMed  Google Scholar 

  13. Haytac MC, Ozcelik O (2006) Evaluation of patient perceptions after frenectomy operations: a comparison of carbon dioxide laser and scalpel techniques. J Periodontol 77(11):1815–1819

    PubMed  Google Scholar 

  14. Olivi G, Chaumanet G, Genovese MD, Beneduce C, Andreana S (2010) Er,Cr:YSGG laser labial frenectomy: a clinical retrospective evaluation of 156 consecutive cases. Gen Dent 58(3):e126–e133

    PubMed  Google Scholar 

  15. Olivi G, Signore A, Olivi M, Genovese MD (2012) Lingual frenectomy: functional evaluation and new therapeutical approach. Eur J Paediatr Dent 13(2):101–106

    PubMed  Google Scholar 

  16. Akpınar A, Toker H, Lektemur Alpan A, Çalışır M (2016) Postoperative discomfort after Nd:YAG laser and conventional frenectomy: comparison of both genders. Aust Dent J 61(1):71–75

    PubMed  Google Scholar 

  17. Levine R, Vitruk P (2015) Laser-assisted operculectomy. Compend Contin Educ Dent 36(8):561–567. quiz 568

    PubMed  Google Scholar 

  18. Romanos G, Nentwig GH (1999) Diode laser (980 nm) in oral and maxillofacial surgical procedures: clinical observations based on clinical applications. J Clin Laser Med Surg 17(5):193–197

    PubMed  Google Scholar 

  19. Yassaei S, Aghili H, Azam AN, Moghadam MG, Safari I (2017) Effect of carbon dioxide laser on increasing vestibular depth in cleft lip and palate patients. Photomed Laser Surg 35(9):492–497

    PubMed  Google Scholar 

  20. Visser H, Mausberg R (1996) Free gingival grafts using a CO2 laser: results of a clinical study. J Clin Laser Med Surg 14(2):85–88

    PubMed  Google Scholar 

  21. Ozcelik O, Seydaoglu G, Haytac CM (2016) Diode laser for harvesting de-epithelialized palatal graft in the treatment of gingival recession defects: a randomized clinical trial. J Clin Periodontol 43(1):63–71

    PubMed  Google Scholar 

  22. Fekrazad R, Chiniforush N, Kalhori K (2019) All done procedure by laser in free gingival graft treatment: a case series study. J Cosmet Laser Ther 21(1):4–10

    Google Scholar 

  23. Yeh S, Jain K, Andreana S (2005) Using a diode laser to uncover dental implants in second-stage surgery. Gen Dent 53(6):414–417

    PubMed  Google Scholar 

  24. Parker S (2007) Surgical laser use in implantology and endodontics. Br Dent J 202(7):377–386

    PubMed  Google Scholar 

  25. El-Kholey KE (2014) Efficacy and safety of a diode laser in second-stage implant surgery: a comparative study. Int J Oral Maxillofac Surg 43(5):633–638

    Google Scholar 

  26. Israel M (1994) Use of the CO2 laser in soft tissue and periodontal surgery. Pract Periodontics Aesthet Dent 6(6):57–64. quiz 64

    PubMed  Google Scholar 

  27. Suter VG, Altermatt HJ, Bornstein MM (2017) A randomized controlled clinical and histopathological trial comparing excisional biopsies of oral fibrous hyperplasias using CO2 and Er:YAG laser. Lasers Med Sci 32(3):573–581

    PubMed  Google Scholar 

  28. Romanos GE (1994) Clinical applications of the Nd:YAG laser in oral soft tissue surgery and periodontology. J Clin Laser Med Surg 12(2):103–108

    PubMed  Google Scholar 

  29. Trajtenberg C, Adibi S (2008) Removal of an irritation fibroma using an Er,Cr:YSGG laser: a case report. Gen Dent 56(7):648–651

    PubMed  Google Scholar 

  30. Amorim JC, de Sousa GR, de Barros SL, Prates RA, Pinotti M, Reibeiro MS (2006) Clinical study of the gingiva healing after gingivectomy and low-level laser therapy. Photomed Laser Surg 24(5):588–594

    PubMed  Google Scholar 

  31. Ozcelik O, Cenk Haytac M, Kunin A, Seydaoglu G (2008) Improved wound healing by low-level laser irradiation after gingivectomy operations: a controlled clinical pilot study. J Clin Periodontol 35(3):250–254

    PubMed  Google Scholar 

  32. Keskiner I, Lutfioğlu M, Aydogdu A, Saygun NI, Serdar MA (2016) Effect of photobiomodulation on transforming growth factor-β1, platelet-derived growth factor-BB, and interleukin-8 release in palatal wounds after free gingival graft harvesting: a randomized clinical study. Photomed Laser Surg 34(6):263–271. Erratum in: Photomed Laser Surg. 2018;36(1):58

    PubMed  PubMed Central  Google Scholar 

  33. Ustaoglu G, Ercan E, Tunali M (2017) Low-level laser therapy in enhancing wound healing and preserving tissue thickness at free gingival graft donor sites: a randomized, controlled clinical study. Photomed Laser Surg 35(4):223–230

    PubMed  Google Scholar 

  34. Heidari M, Paknejad M, Jamali R, Nokhbatolfoghahaei H, Fekrazad R, Moslemi N (2017) Effect of laser photobiomodulation on wound healing and postoperative pain following free gingival graft: a split-mouth triple-blind randomized controlled clinical trial. J Photochem Photobiol B 172:109–114

    PubMed  Google Scholar 

  35. Aykol G, Baser U, Maden I, Kazak Z, Onan U, Tanrikulu-Kucuk S, Ademoglu E, Issever H, Yalcin F (2011) The effect of low-level laser therapy as an adjunct to non-surgical periodontal treatment. J Periodontol 82(3):481–488

    PubMed  Google Scholar 

  36. Ogita M, Tsuchida S, Aoki A, Satoh M, Kado S, Sawabe M, Nanbara H, Kobayashi H, Takeuchi Y, Mizutani K, Sasaki Y, Nomura F, Izumi Y (2015) Increased cell proliferation and differential protein expression induced by low-level Er:YAG laser irradiation in human gingival fibroblasts: proteomic analysis. Lasers Med Sci 30(7):1855–1866

    PubMed  Google Scholar 

  37. Tang E, Khan I, Andreana S, Arany PR (2017) Laser-activated transforming growth factor-β1 induces human β-defensin 2: implications for laser therapies for periodontitis and peri-implantitis. J Periodontal Res 52(3):360–367

    PubMed  Google Scholar 

  38. Smith TA, Thompson JA, Lee WE (1993) Assessing patient pain during dental laser treatment. J Am Dent Assoc 124(2):90–95

    PubMed  Google Scholar 

  39. Coluzzi DJ, Convissar RA, Roshkind DM (2016) Laser fundamentals. Chapter 2. In: Principles and practice of laser dentistry, 2nd edn. Elsevier, Amsterdam, pp 12–26

    Google Scholar 

  40. Schwarz F, Sculean A, Georg T, Reich E (2001) Periodontal treatment with an Er:YAG laser compared to scaling and root planing. A controlled clinical study. J Periodontol 72(3):361–367

    PubMed  Google Scholar 

  41. Al-Falaki R, Hughes F, Wadia R, Eastman C, Kontogiorgos E, Low S (2016) The effect of an Er,Cr:YSGG laser in the management of intrabony defects associated with chronic periodontitis using minimally invasive closed flap surgery. A case series. Laser Ther 25(2):131–139

    PubMed  PubMed Central  Google Scholar 

  42. Israel M, Rossmann JA, Froum SJ (1995) Use of the carbon dioxide laser in retarding epithelial migration: a pilot histological human study utilizing case reports. J Periodontol 66(3):197–204

    PubMed  Google Scholar 

  43. Moritz A, Gutknecht N, Doertbudak O, Goharkhay K, Schoop U, Schauer P, Sperr W (1997) Bacterial reduction in periodontal pockets through irradiation with a diode laser: a pilot study. J Clin Laser Med Surg 15(1):33–37

    PubMed  Google Scholar 

  44. Kreisler M, Al Haj H, d’Hoedt B (2005) Clinical efficacy of semiconductor laser application as an adjunct to conventional scaling and root planing. Lasers Surg Med 37(5):350–355

    PubMed  Google Scholar 

  45. Ribeiro IW, Sbrana MC, Esper LA, Almeida AL (2008) Evaluation of the effect of the GaAlAs laser on subgingival scaling and root planing. Photomed Laser Surg 26(4):387–391

    PubMed  Google Scholar 

  46. Qadri T, Javed F, Johannsen G, Gustafsson A (2015) Role of diode lasers (800-980 nm) as adjuncts to scaling and root planing in the treatment of chronic periodontitis: a systematic review. Photomed Laser Surg 33(11):568–575

    PubMed  Google Scholar 

  47. Smiley CJ, Tracy SL, Abt E, Michalowicz BS, John MT, Gunsolley J, Cobb CM, Rossmann J, Harrel SK, Forrest JL, Hujoel PP, Noraian KW, Greenwell H, Frantsve-Hawley J, Estrich C, Hanson N (2015) Systematic review and meta-analysis on the nonsurgical treatment of chronic periodontitis by means of scaling and root planing with or without adjuncts. J Am Dent Assoc 146(7):508–524

    PubMed  Google Scholar 

  48. Epstein SR (1992) Curettage revisited: laser therapy. Pract Periodontics Aesthet Dent 4(2):27–32

    PubMed  Google Scholar 

  49. Neill ME, Mellonig JT (1997) Clinical efficacy of the Nd:YAG laser for combination periodontitis therapy. Pract Periodontics Aesthet Dent 9(6 Suppl):1–5

    PubMed  Google Scholar 

  50. Gold SI, Vilardi MA (1994) Pulsed laser beam effects on gingiva. J Clin Periodontol 21(6):391–396

    PubMed  Google Scholar 

  51. Yukna RA, Carr RL, Evans GH (2007) Histologic evaluation of an Nd:YAG laser-assisted new attachment procedure in humans. Int J Periodontics Restorative Dent 27(6):577–587

    PubMed  Google Scholar 

  52. Nevins ML, Camelo M, Schupbach P, Kim SW, Kim DM, Nevins M (2012) Human clinical and histologic evaluation of laser-assisted new attachment procedure. Int J Periodontics Restorative Dent 32(5):497–507

    Google Scholar 

  53. McCawley TK, McCawley MN, Rams TE (2018) Immediate effects of laser-assisted new attachment procedure (LANAP) on human periodontitis microbiota. J Int Acad Periodontol 20(4):163–171

    Google Scholar 

  54. Salvi GE, Cosgarea R, Sculean A (2017) Prevalence and mechanisms of peri-implant diseases. J Dent Res 96(1):31–37

    PubMed  Google Scholar 

  55. Heitz-Mayfield LJ, Mombelli A (2014) The therapy of peri-implantitis: a systematic review. Int J Oral Maxillofac Implants 29(Suppl):325–345

    PubMed  Google Scholar 

  56. Murphy KG, Polack MA, Arzadon JM, Hickerson RD, Scheyer ET (2016) A report of three cases from an ongoing prospective clinical study on a novel pink biomimetic implant system. Compend Contin Educ Dent 37(2):S1–S12

    PubMed  Google Scholar 

  57. Kim TI, Jang JH, Kim HW, Knowles JC, Ku Y (2008) Biomimetic approach to dental implants. Curr Pharm Des 14(22):2201–2211

    PubMed  Google Scholar 

  58. Ratner BD (2001) Replacing and renewing: synthetic materials, biomimetics, and tissue engineering in implant dentistry. J Dent Educ 65(12):1340–1347

    PubMed  Google Scholar 

  59. Ting M, Craig J, Balkin BE, Suzuki JB (2018) Peri-implantitis: a comprehensive overview of systematic reviews. J Oral Implantol 44(3):225–247

    Google Scholar 

  60. Teng FY, Chen WC, Wang YL, Hung CC, Tseng CC (2016) Effects of osseointegration by bone morphogenetic protein-2 on titanium implants in vitro and in vivo. Bioinorg Chem Appl 2016:3837679

    PubMed  PubMed Central  Google Scholar 

  61. Froum SJ, Froum SH, Rosen P (2015) A regenerative approach to the successful treatment of peri-implantitis: a consecutive series of 170 implants in 100 patients with 2- to 10-year follow-up. Int J Periodontics Restorative Dent 35(6):857–863

    Google Scholar 

  62. An YZ, Lee JH, Heo YK, Lee JS, Jung UW, Choi SH (2017) Surgical treatment of severe peri-implantitis using a round titanium brush for implant surface decontamination: a case report with clinical reentry. J Oral Implantol 43(3):218–225

    PubMed  Google Scholar 

  63. Pommer B, Haas R, Mailath-Pokorny G, Fürhauser R, Watzek G, Busenlechner D, Müller-Kern M, Kloodt C (2016) Periimplantitis treatment: long-term comparison of laser decontamination and implantoplasty surgery. Implant Dent 25(5):646–649

    PubMed  Google Scholar 

  64. Aoki A, Mizutani K, Schwarz F, Sculean A, Yukna RA, Takasaki AA, Romanos GE, Taniguchi Y, Sasaki KM, Zeredo JL, Koshy G, Coluzzi DJ, White JM, Abiko Y, Ishikawa I, Izumi Y (2015) Periodontal and peri-implant wound healing following laser therapy. Periodontol 2000 68(1):217–269

    PubMed  Google Scholar 

  65. Nicholson D, Blodgett K, Braga C, Finkbeiner L, Fourrier J, George J, Gregg R II, Honigman A, Houser B, Lamas W, Lehrman N, Linden E, McCarthy D, McCawley T, McCormick R, Marcus E, Noraian K, Rubelman P, Salama M, Saunders S, Seamons B, Thein D, Toms M, Vassos G, Harris DM (2014) Pulsed Nd:YAG laser treatment for failing implants due to peri-implantitis. In: Rechmann P, Fried D (eds) Lasers in dentistry XX. Proc. SPIE 8929. February 2, 2014, San Francisco, California. Society of Photo-Optical Instrumentation Engineers, Bellingham, WA, pp 89290H-1–89290H-14

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Cite this chapter

Honigman, A.S., Sulewski, J. (2020). Lasers in Periodontal Surgery. In: Nares, S. (eds) Advances in Periodontal Surgery. Springer, Cham. https://doi.org/10.1007/978-3-030-12310-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-12310-9_5

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-12309-3

  • Online ISBN: 978-3-030-12310-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics