Skip to main content

Weights—Standards of Mass

  • Chapter
  • First Online:
Mass Metrology

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 155))

  • 404 Accesses

Abstract

Mass of a body is determined by comparing its mass against another body whose mass is already known. This body of known mass is called as weight. As it represent a body of known mass, so some people call it also as standard mass piece. Further as this body is used as reference for comparing mass of a body, it is called as standard of mass. Since long time the usage of the word weight is prevalent for a body of known mass that is used to compare or determine the mass of another body.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. OIML R-111 Part 1, Weights of class \({\rm E}_{1}\), \({\rm E}_{2}\), \({\rm F}_{1}\), \({\rm F}_{2}\), \({\rm M}_{1}\), \({\rm M}_{1-2}\), \({\rm M}_{2}\), \({\rm M}_{2-3}\), \({\rm M}_{3}\) Metrological and Technical requirements (France, 2004)

    Google Scholar 

  2. NIST Handbook 105–1, Specifications and Tolerances for Reference and Field Standards of Weights and Measures (US Department of Commerce, 1990)

    Google Scholar 

  3. NIST Handbook 44, Specifications, Tolerances, other Technical Requirements for Weighing and Measuring Devices (US Department of Commerce, 1998)

    Google Scholar 

  4. ASTM E 617–97, Standard Specifications for Laboratory Weights and Precision Mass Standards (2003)

    Google Scholar 

  5. S.V. Gupta, A Treatise on Standards of Weights and Measures, 6th edn. (Commercial Law Books Publisher’s, New Delhi)

    Google Scholar 

  6. M. Kochsiek, M. Glaser (eds.), Comprehensive Mass Metrology (Wiley-VCH, New York, 2000)

    Google Scholar 

  7. S.V. Gupta, B.G. Mathur, Precision weights. ISI Bull. 22, 247–252 (1970)

    Google Scholar 

  8. F.A. Gould, Test on highly non-magnetic stainless steels. J. Sci. Instrum. 23, 124 (1946)

    Google Scholar 

  9. P.H. Bigg, F.H. Burch, Br. J. Appl. Phys. 5, 382 (1954)

    Google Scholar 

  10. A.F.H. Ward, Chem. Indust. 393 (1945)

    Google Scholar 

  11. W.M. Thornton, J. Chem. Educ. 16, 157 (1939)

    Google Scholar 

  12. W.M. Thornton, J. Chem. Educ. Franklin Inst. 250, 157 (1950)

    Google Scholar 

  13. T. Myklebust, H. Kallgren, L. Nielsen, K. Riski, Testing of weights part 1, calibration and surface roughness. OIML Bull. XXXVII I(2), 8–17 (1997)

    Google Scholar 

  14. J.J. Manely, Phil. Mag. 16, 489 (1933)

    Google Scholar 

  15. R.S. Davis, Determination the magnetic properties of 1 kg mass standards. J. Res. Natl. Inst. Stand. Tech. 100, 209–225 (1995)

    Google Scholar 

  16. T. Myklebust, H. Kallgren, L. Nielsen, K. Riski, Testing of weights Part 3. Magnetism and convection. OIML Bull. XXXVII I(4), 5–10 (1997)

    Google Scholar 

  17. A.E. Drake, C.I. Ager, Reference materials for calibrating magnetic permeability measuring equipment. IEEE Trans. Magn. 25, 2050–2051 (1990)

    Google Scholar 

  18. R.S. Davis, New method to measure magnetic susceptibility. Meas. Sci. Technol. 4, 141–147 (1993)

    Google Scholar 

  19. D.X. Chem, J.A. Brug, R.B. Goldfrab, Demagnetising factors for cylinders. IEEE Trans. Magn. 27, 3601–3619 (1991)

    Google Scholar 

  20. M. McCaig, Permanent Magnetics in theory and Practice (Pentech Press, London)

    Google Scholar 

  21. F.A. Gould, A knife-edge balance for weighing of the highest accuracy. Proc. Phys. Soc. B. 42, 817 (1949)

    Google Scholar 

  22. M. Glaser, Response of apparent mass to thermal gradients. Metrologia 27, 95–100 (1990)

    Google Scholar 

  23. M. Glaser, J.Y. Do, Effect of free convection on the apparent mass of 1 kg standards. Metrologia 30, 67–73 (1993)

    Google Scholar 

  24. M. Glaser, Influence of free convection on the weighing of mass standards estimated changes in apparent mass and waiting times. PTB Mitteillungen 106, 23–28 (1996)

    Google Scholar 

  25. M. Kochsiek, Measurement of water adsorption layers on metal surfaces. Etrologia 18, 153–159 (1982)

    Google Scholar 

  26. R. Schwartz, Accurate measurement of absorption layers on mass standards by weighing and elipsometry in controlled environments. CCM 93–2, 7 (1993)

    Google Scholar 

  27. Y. Koyabashi, Precision Measurements and fundamental Constants. US Special publication No. 617, 441–443 (1984)

    Google Scholar 

  28. R. Probst, M. Kochsiek, Investigation of a hydrostatic weighing method for a 1 kg mass comparator. Metrologia 19(4), 137–146 (1984)

    Google Scholar 

  29. C.J. Smithells, Metalsa Reference Book, 553, 577 (Butterworths Scientific Publications, London, 1949)

    Google Scholar 

  30. L.F. Bates, Modern Magnetism (Cambridge University Press, 1948), pp. 30–31

    Google Scholar 

  31. S.L. Hoyt, Metals and Alloys Data Book (Reinhold Publishing Corp. New York, 1943), p. 251

    Google Scholar 

  32. A. Butt, Copper Metal and its Alloys and Compounds (Reinhold Publishing Corp, New York, 1943), pp. 502–504

    Google Scholar 

  33. J.L. Everhart, W.E. Lindlief, J. Kangegis, P.G. Weisser, F. Siegel, Mechanical Properties of Metals and Alloys, NBS Circular C-447 (US Government Press, Washington, 1943), p. 150

    Google Scholar 

  34. C.D. Hodgman, R.C. Weast, S.M. Selby, Handbook of Chemistry and Physics (Chemical Rubber Publishing Co, Cleveland, Ohio, 1955), p. 2102

    Google Scholar 

  35. R.A. Wikkins, R.S. Bunn, Copper and Copper Base Alloys (McGraw Hill Book Co Inc, New York, 1943), p. 204

    Google Scholar 

  36. D. Hanson, W.T. Pall-Walpole, Chil Cost Tin Bronze (Edward Arnold & Co, London, 1951), p. 255

    Google Scholar 

  37. M. Udy, Metallurgy of Chromium and its Alloys, vol. 98 (Reinhold Publishing Corp, New York, 1951), pp. 182–183

    Google Scholar 

  38. G.W.C. Kaye, T.N. Laby, Tables of Physical Chemical Constants (Longman Green and CO, London, 1946), pp. 52, 55, 118–120, 171

    Google Scholar 

  39. R. Sun, L. Wang, Y. Pei, Experimental research on the material of weights in China. OIML Bull. 35 (1994)

    Google Scholar 

  40. M. Plassa, M. Tolomelli, A. Torino, Chemical properties of alloys for mass standards, in Proceedings of the IMEKO Conference, Kobe, Japan (1984), pp. 85–90

    Google Scholar 

  41. T.J. Quinn, A. Picard, Surface effects on Pr–Ir mass standards. CCM/93–6, 5 (1993)

    Google Scholar 

  42. I.A. Robinson, Comparing in air and in vacuum mass standards without buoyancy correction via in vacuum weighing. Metrogia 27, 159 (1990)

    Google Scholar 

  43. B.P. Kibble, Comparing in vacuum with another in air by conventional weighing. Metrologia 27, 157–158 (1990)

    Google Scholar 

  44. P.J. Cumpson, M.P. Seah, J.E. Castle, Stability of reference Masses I. Metrologia 31, 21–26 (1994)

    Google Scholar 

  45. P.J. Cumpson, M.P. Seah, Stability of reference masses I-evidence for possible variations in the mass of reference kilograms arising from mercury contamination. CCM/93–5, 11 (1993)

    Google Scholar 

  46. P.J. Cumpson , M.P. Seah Stability of reference masses III, mechanism and long term effects of mercury contamination on Platinum Iridium Mass standards. Metrologia 31, 375–388 (1994)

    Google Scholar 

  47. M.P. Seah, J.H. Qiu, P.J. Cumpson, J.E. Castle, Stability of reference masses II: The effect of environment and cleaning methods on the surfaces of stainless steel and allied materials. Metrologia 31, 93–108 (1994)

    Google Scholar 

  48. P.J. Cumpson, M.P. Seah, Stability of reference masses IV: growth of carbonaceous contamination on Platinum-iridium alloy surfaces and cleaning by UV/ozone treatment. Metrologia 33, 507–532 (1996)

    Google Scholar 

  49. M. Plassa, La satabilite des etalon de masse. Bull. BNM 76–77, 27–35 (1989)

    Google Scholar 

  50. T. Myklebust, H. Kallgren, L. Nielsen, K. Riski, Testing of weights Part 2. OIML Bull. XXXVIII(3), (1997)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Gupta .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gupta, S.V. (2019). Weights—Standards of Mass. In: Mass Metrology. Springer Series in Materials Science, vol 155. Springer, Cham. https://doi.org/10.1007/978-3-030-12465-6_9

Download citation

Publish with us

Policies and ethics