Skip to main content

Diamond Electrochemical Devices

  • Chapter
  • First Online:
Novel Aspects of Diamond

Part of the book series: Topics in Applied Physics ((TAP,volume 121))

Abstract

Conductive boron-doped diamond is one of the best electrode materials and has been widely used for different electrochemical applications. Among them, the fabrication, properties, and applications of small-dimensional diamond electrochemical devices (e.g., diamond microelectrode, ultramicroelectrode, nanoelectrode and their arrays as well as scanning probe microscopy tips) have been paid much attention. In this chapter we summarize recent progress and achievements with respect to these small dimensional diamond electrochemical devices. The potential applications and future research directions of these devices are also discussed and outlined.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M. Iwaki, S. Sato, K. Takahashi, H. Sakairi, Electrical conductivity of nitrogen and argon implanted diamond. Nucl. Instrum. Methods Phys. Res. 209–210(2), 1129–1133 (1983). https://doi.org/10.1016/0167-5087(83)90930-4

    Article  Google Scholar 

  2. Y.V. Pleskov, A.Y. Sakharova, M.D. Krotova, L.L. Bouilov, B.V. Spitsyn, Photoelectrochemical properties of semiconductor diamond. J. Electroanal. Chem. 228(1–2), 19–27 (1987). https://doi.org/10.1016/0022-0728(87)80093-1

    Article  CAS  Google Scholar 

  3. R. Tenne, C. Levy-Clement, Diamond electrodes. Isr. J. Chem. 38(1–2), 57–73 (1998). https://doi.org/10.1002/ijch.199800007

    Article  CAS  Google Scholar 

  4. G.M. Swain, A.B. Andreson, J.C. Angus, Applications of diamond thin films in electrochemistry. MRS Bull. 23(9), 56–60 (1998). https://doi.org/10.1557/S0883769400029389

    Article  CAS  Google Scholar 

  5. Y.V. Pleskov, Synthetic diamond in electrochemistry. Russ. Chem. Rev. 68(5), 381–392 (1999). https://doi.org/10.1070/RC1999v068n05ABEH000494

    Article  CAS  Google Scholar 

  6. S.J. Cobb, Z.J. Ayres, J.V. Macpherson, Boron doped diamond: a designer electrode material for the twenty-first century. Annu. Rev. Anal. Chem. 11 (2018). https://doi.org/10.1146/annurev-anchem-061417-010107

  7. T.A. Ivandini, Y. Einaga, Polycrystalline boron-doped diamond electrodes for electrocatalytic and electrosynthetic applications. Chem. Commun. 53, 1338–1347 (2017). https://doi.org/10.1039/C6CC08681K

    Article  CAS  Google Scholar 

  8. N. Yang, J.S. Foord, X. Jiang, Diamond electrochemistry at the nanoscale: a review. Carbon 99, 90–110 (2016). https://doi.org/10.1016/j.carbon.2015.11.061

    Article  CAS  Google Scholar 

  9. R.L. McCreery, Advanced carbon electrode materials for molecular electrochemistry. Chem. Rev. 108(7), 2646–2687 (2008). https://doi.org/10.1021/cr068076m

  10. O. Chailapakul, W. Siangproh, D.A. Tryk, Boron-doped diamond-based sensors: a review. Sens. Lett. 4(2), 99–119 (2006). https://doi.org/10.1166/sl.2006.008

    Article  CAS  Google Scholar 

  11. Y.L. Zhou, J.F. Zhi, The application of boron-doped diamond electrodes in amperometric biosensors. Talanta 79(5), 1189–1196 (2009). https://doi.org/10.1016/j.talanta.2009.05.026

    Article  CAS  Google Scholar 

  12. C.E. Nebel, B. Rezek, D. Shin, H. Uetsuka, N. Yang, Diamond for bio-sensor applications. J. Phys. D Appl. Phys. 40(20), 6443–6466 (2007). https://doi.org/10.1088/0022-3727/40/20/S21

    Article  CAS  Google Scholar 

  13. R. Linares, P. Doering, B. Linares, Diamond bio electronics. Stud. Health Technol. Inform. 149, 284–296 (2009). https://doi.org/10.3233/978-1-60750-050-6-284

    Article  Google Scholar 

  14. V. Vermeeren, S. Wenmackers, P. Wagner, L. Michiels, DNA sensors with diamond as a promising alternative transducer material. Sensor 9(7), 5600–5636 (2009). https://doi.org/10.3390/s90705600

    Article  CAS  Google Scholar 

  15. A. Argoitia, H.B. Martin, E.J. Rozak, U. Landau, J.C. Angus, Electrochemical studies of boron-doped diamond electrodes. MRS. Proc. 416, 349 (1995). https://doi.org/10.1557/PROC-416-349

    Article  Google Scholar 

  16. G.M. Swain, R. Ramesham, The electrochemical activity of boron-doped polycrystalline diamond thin film electrodes. Anal. Chem. 65(4), 345–351 (1993). https://doi.org/10.1021/ac00052a007

    Article  CAS  Google Scholar 

  17. G.M. Swain, The use of CVD diamond thin films in electrochemical systems. Adv. Mater. 6(5), 388–392 (1994). https://doi.org/10.1002/adma.19940060511

    Article  CAS  Google Scholar 

  18. R. Hoffmann, A. Kriele, H. Obloh, J. Hees, M. Wolfer, W. Smirnov, N. Yang, C.E. Nebel, Electrochemical hydrogen termination of boron-doped diamond. Appl. Phys. Lett. 97(5), 052103 (2010). https://doi.org/10.1063/1.3476346

    Article  CAS  Google Scholar 

  19. W. Yang, O. Auciello, J.E. Butler, W. Cai, J.A. Carlisle, J.E. Gerbi, D.M. Gruen, T. Knickerbocker, T.L. Lasseter, J.N. Russell Jr., J.M. Smith, R.J. Hamers, DNA-modified nanocrystalline diamond thin-films as stable, biologically active substrates. Nat. Mater. 1(4), 253–257 (2002). https://doi.org/10.1038/nmat779

    Article  CAS  Google Scholar 

  20. A. Hartl, E. Schmich, J.A. Garrido, J. Hernando, S.C.R. Catharino, S. Walter, P. Feulner, A. Kromka, D. Steinmuller, M. Stutzmann, Protein-modified nanocrystalline diamond thin films for biosensor applications. Nat. Mater. 3(10), 736–742 (2004). https://doi.org/10.1038/nmat1204

    Article  CAS  Google Scholar 

  21. Y.S. Zou, Y. Yang, W.J. Zhang, Y.M. Chong, B. He, I. Bello, S.T. Lee, Fabrication of diamond nanopillars and their arrays. Appl. Phys. Lett. 92(5), 053105 (2008). https://doi.org/10.1063/1.2841822

    Article  CAS  Google Scholar 

  22. N. Yang, H. Uetsuka, E. Osawa, C.E. Nebel, Vertically aligned nanowires from boron-doped diamond. Nano Lett. 8(11), 3572–3576 (2008). https://doi.org/10.1021/nl801136h

    Article  CAS  Google Scholar 

  23. C.E. Nebel, N. Yang, H. Uetsuka, E. Osawa, N. Tokuda, O. William, Diamond nano-wires, a new approach towards next generation electrochemical gene sensor platforms. Diam. Relat. Mater. 18(5–8), 910–917 (2009). https://doi.org/10.1016/j.diamond.2008.11.024

    Article  CAS  Google Scholar 

  24. W. Smirnov, A. Kriele, N. Yang, C.E. Nebel, Aligned diamond nano-wires: fabrication and characterisation for advanced applications in bio- and electrochemistry. Diam. Relat. Mater. 19(2–3), 186–189 (2010). https://doi.org/10.1016/j.diamond.2009.09.001

    Article  CAS  Google Scholar 

  25. A.J. Bard, L.R. Faulkner, Electrochemical Methods, Fundamentals and Applications, 2nd edn. (Wiley-VCH, New York, 2001)

    Google Scholar 

  26. J. Wang, Analytical Electrochemistry, 2nd edn. (Wiley-VCH, New York, 2000)

    Book  Google Scholar 

  27. X.J. Huang, A.M. O’Mahony, R.G. Compton, Microelectrode arrays for electrochemistry: approaches to fabrication. Small 5(7), 776–788 (2009). https://doi.org/10.1002/smll.200801593

    Article  CAS  Google Scholar 

  28. D.W.M. Arrigan, Nanoelectrodes, nanoelectrode arrays and their applications. Analyst 129(12), 1157–1165 (2004). https://doi.org/10.1039/B415395M

    Article  CAS  Google Scholar 

  29. R.G. Compton, G.G. Wildgoose, N.V. Rees, I. Streeter, R. Baron, Design, fabrication, characterisation and application of nanoelectrode arrays. Chem. Phys. Lett. 459(1–6), 1–17 (2008). https://doi.org/10.1016/j.cplett.2008.03.095

    Article  CAS  Google Scholar 

  30. O. Ordeig, J. del Campo, F.X. Munoz, C.E. Banks, R.G. Compton, Electroanalysis utilizing amperometric microdisk electrode arrays. Electroanalysis 19(19–20), 73–1986 (2007). https://doi.org/10.1002/elan.200703914

    Article  CAS  Google Scholar 

  31. J.B. Cooper, S. Pang, S. Albin, J. Zheng, R.M. Johnson, Fabrication of boron-doped CVD diamond microelectrodes. Anal. Chem. 70(3), 464–467 (1998). https://doi.org/10.1021/ac970762l

    Article  CAS  Google Scholar 

  32. B.V. Sarada, T.N. Rao, D.A. Tryk, A. Fujishima, Electrochemical characterization of highly boron-doped diamond microelectrodes in aqueous electrolyte. J. Electrochem. Soc. 146(4), 1469–1471 (1999). https://doi.org/10.1149/1.1391788

    Article  CAS  Google Scholar 

  33. B. Duran, R.F. Brocenschi, M. France, J.J. Galligan, G.M. Swain, Electrochemical activation of diamond microelectrodes: implications for the in vitro measurement of serotonin in the bowel. Analyst 139(12), 3160–3166 (2014). https://doi.org/10.1039/c4an00506f

    Article  CAS  Google Scholar 

  34. K.B. Holt, J. Hu, J.S. Foord, Fabrication of boron-doped diamond ultramicroelectrodes for use in scanning electrochemical microscopy experiments. Anal. Chem. 79(6), 2556–2561 (2007). https://doi.org/10.1021/ac061995s

    Article  CAS  Google Scholar 

  35. J. Hu, J.S. Foord, K.B. Holt, Hot filament chemical vapour deposition of diamond ultramicroelectrodes. Phys. Chem. Chem. Phys. 9(40), 5469–5475 (2007). https://doi.org/10.1039/B710241K

    Article  CAS  Google Scholar 

  36. J. Hu, K.B. Holt, J.S. Foord, Focused ion beam fabrication of boron-doped diamond ultramicroelectrodes. Anal. Chem. 81(14), 5663–5670 (2009). https://doi.org/10.1021/ac9003908

    Article  CAS  Google Scholar 

  37. J. Cvacka, V. Quaiserova, J.W. Park, Y. Show, A. Muck, G.M. Swain, Boron-doped diamond microelectrodes for use in capillary electrophoresis with electrochemical detection. Anal. Chem. 75(11), 2678–2687 (2003). https://doi.org/10.1021/ac030024z

    Article  CAS  Google Scholar 

  38. J. Park, Y. Show, V. Quaiserova, J.J. Galligan, G.D. Fink, G.M. Swain, Diamond microelectrodes for use in biological environments. J. Electroanal. Chem. 583(1), 56–68 (2005). https://doi.org/10.1016/j.jelechem.2005.04.032

    Article  CAS  Google Scholar 

  39. J.M. Halpern, S. Xie, G.P. Sutton, B.T. Higashikubo, C.A. Chestek, H. Lu, H.J. Chiel, H.B. Martin, Diamond electrodes for neurodynamic studies in aplysia californica. Diam. Relat. Mater. 15(2–3), 183–187 (2006). https://doi.org/10.1016/j.diamond.2005.06.039

    Article  CAS  Google Scholar 

  40. S. Xie, G. Shafer, C.G. Wilson, H.B. Martin, In vitro adenosine detection with a diamond-based sensor. Diam. Relat. Mater. 15(2–3), 225–228 (2006). https://doi.org/10.1016/j.diamond.2005.08.018

    Article  CAS  Google Scholar 

  41. A.L. Colley, C.G. Williams, U. D´Haenens Johnsson, M.E. Newton, P.R. Uniwin, N.R. Wilson, J.V. Macpherson, Examination of the spatially heterogeneous electroactivity of boron-doped diamond microarray electrodes. Anal. Chem. 78(8), 2539–2548 (2006). https://doi.org/10.1021/ac0520994

  42. K. Tsunozaki, Y. Einaga, T.N. Rao, A. Fujishima, Fabrication and electrochemical characterization of boron-doped diamond microdisc array electrodes. Chem. Lett. 31(5), 502–503 (2002). https://doi.org/10.1246/cl.2002.502

    Article  Google Scholar 

  43. C. Provent, W. Haenni, E. Santoli, P. Rychen, Boron-doped diamond electrodes and microelectrode-arrays for the measurement of sulfate and peroxodisulfate. Electrochim. Acta 49(22–23), 3737–3744 (2004). https://doi.org/10.1016/j.electacta.2004.02.047

    Article  CAS  Google Scholar 

  44. K.L. Soh, W.P. Kang, J.L. Davidson, Y.M. Wong, A. Wisisoraat, G. Swain, D.E. Cliffel, CVD diamond anisotropic film as electrode for electrochemical sensing. Sens. Actuators B 91(1–3), 39–45 (2003). https://doi.org/10.1016/S0925-4005(03)00064-9

    Article  CAS  Google Scholar 

  45. K.L. Soh, W.P. Kang, J.L. Davidson, S. Basu, Y.M. Wong, D.E. Cliffel, A.B. Bonds, G.M. Swain, Diamond-derived microelectrodes array for electrochemical analysis. Diam. Relat. Mater. 13(11–12), 2009–2015 (2004). https://doi.org/10.1016/j.diamond.2004.07.025

    Article  CAS  Google Scholar 

  46. K.L. Soh, W.P. Kang, J.L. Davidson, Y.M. Wong, D.E. Cliffel, G. Swain, Ordered array of diamond ultramicroband electrodes for electrochemical analysis. Diam. Relat. Mater. 17(3), 240–246 (2008). https://doi.org/10.1016/j.diamond.2007.12.023

    Article  CAS  Google Scholar 

  47. K.L. Soh, W.P. Kang, J.L. Davidson, Y.M. Wong, D.E. Cliffel, G. Swain, Diamond-derived ultramicroelectrodes designed for electrochemical analysis and bioanalyte sensing. Diam. Relat. Mater. 17(4–5), 900–905 (2008). https://doi.org/10.1016/j.diamond.2007.12.041

    Article  CAS  Google Scholar 

  48. S. Raina, W.P. Kang, J.L. Davidson, Fabrication of nitrogen-incorporated nanodiamond ultra-microelectrode array for Dopamine detection. Diam. Relat. Mater. 19(2–3), 256–259 (2010). https://doi.org/10.1016/j.diamond.2009.10.013

    Article  CAS  Google Scholar 

  49. M. Pagels, C.E. Hall, N.S. Lawrence, A. Meredith, T.G.L. Jones, H.P. Godfried, C.S.J. Pickles, J. Wilman, C.E. Banks, R.G. Compton, L. Jiang, All-diamond microelectrode array device. Anal. Chem. 77(11), 3705–3708 (2005). https://doi.org/10.1021/ac0502100

    Article  CAS  Google Scholar 

  50. A.O. Simm, C.E. Banks, S. Ward-Jones, T.J. Davies, N.S. Lawrence, T.G.J. Jones, L. Jiang, R.G. Compton, Boron-doped diamond microdisc arrays: electrochemical characterisation and their use as a substrate for the production of microelectrode arrays of diverse metals (Ag, Au, Cu) via electrodeposition. Analyst 130(9), 1303–1311 (2005). https://doi.org/10.1039/B506956D

    Article  CAS  Google Scholar 

  51. N.S. Lawrence, M. Pagels, A. Meredith, T.G.J. Jones, C.E. Hall, C.S. Pickles, H.P. Godfried, C.E. Banks, R.G. Compton, L. Jiang, Electroanalytical applications of boron-doped diamond microelectrode arrays. Talanta 69(4), 829–834 (2006). https://doi.org/10.1016/j.talanta.2005.11.020

    Article  CAS  Google Scholar 

  52. M. Bonnauron, S. Saada, L. Rousseau, G. Lissorgues, C. Mer, P. Bergonzo, High aspect ratio diamond microelectrode array for neuronal activity measurements. Diam. Relat. Mater. 17(7–10), 1399–1404 (2008). https://doi.org/10.1016/j.diamond.2007.12.065

    Article  CAS  Google Scholar 

  53. M. Bonnauron, S. Saada, C. Mer, C. Gesset, O.A. Williams, L. Rousseau, E. Scorsone, P. Mailley, Transparent diamond-on-glass micro-electrode arrays for ex-vivo neuronal study. Phys. Status Solidi (a) 205(9), 2126–2129 (2008). https://doi.org/10.1002/pssa.200879733

    Article  CAS  Google Scholar 

  54. V. Carabelli, S. Gosso, A. Marcantoni, Y. Xu, E. Colombo, Z. Gao, E. Vittone, E. Kohn, A. Pasquarelli, E. Carbone, Nanocrystalline diamond microelectrode arrays fabricated on sapphire technology for high-time resolution of quantal catecholamine secretion from chromaffin cells. Biosens. Bioelectron. 26(1), 92–98 (2010). https://doi.org/10.1016/j.bios.2010.05.017

    Article  CAS  Google Scholar 

  55. W. Smirnov, N. Yang, R. Hoffmann, J. Hees, H. Obloh, W. Muller-Sebert, C.E. Nebel, Integrated all-diamond ultramicroelectrode arrays: optimization of Faradaic and capacitive currents. Anal. Chem. 83(19), 7438–7443 (2011). https://doi.org/10.1021/ac201595k

    Article  CAS  Google Scholar 

  56. N. Yang, W. Smirnov, J. Hees, R. Hoffmann, A. Kriele, H. Obloh, W. Müller-Sebert, C.E. Nebel, Diamond ultra-microelectrode arrays for achieving maximum Faradaic current with minimum capacitive charging. Phys. Status Solidi (a) 208(9), 2087–2092 (2011). https://doi.org/10.1002/pssa.201100016

    Article  CAS  Google Scholar 

  57. J. Hees, R. Hoffmann, A. Kriele, W. Smirnov, H. Obloh, K. Glorer, B. Raynor, R. Driad, N. Yang, O.A. Williams, C.E. Nebel, Nanocrystalline diamond nanoelectrode arrays and ensembles. ACS Nano 5(4), 3339–3346 (2011). https://doi.org/10.1021/nn2005409

    Article  CAS  Google Scholar 

  58. A. Eifert, P. Langenwalter, J. Higl, M. Lind|n, C. E. Nebel, B. Mizaikoff, C. Kranz, Focused ion beam (FIB)-induced changes in the electrochemical behavior of boron-doped diamond (BDD) electrodes. Electrochim. Acta 130, 418–425 (2014). https://doi.org/10.1016/j.electacta.2014.03.029

  59. E.L. Silva, M.A. Neto, A.J.S. Fernandes, A.C. Bastos, R.F. Silva, M.L. Zheludkevich, F.J. Oliveira, Fast coating of ultramicroelectrodes with boron-doped nanocrystalline diamond. Diam. Relat. Mater. 19(10), 1330–1335 (2009). https://doi.org/10.1016/j.diamond.2010.06.023

    Article  CAS  Google Scholar 

  60. M.B. Joseph, E. Bitziou, T.L. Read, L. Meng, N.L. Palmer, T.P. Mollart, M.E. Newton, J.V. Macpherson, Fabrication route for the production of coplanar, diamond insulated, boron doped diamond macro- and microelectrodes of any geometry. Anal. Chem. 86(11), 5238–5244 (2014). https://doi.org/10.1021/ac501092y

    Article  CAS  Google Scholar 

  61. A. Suzuki, T.A. Ivandini, K. Yoshimi, A. Fujishima, G. Oyama, T. Nakazato, N. Hattori, S. Kitazawa, Y. Einaga, Fabrication, characterization, and application of boron-doped diamond microelectrodes for in vivo dopamine detection. Anal. Chem. 79(22), 8608–8615 (2007). https://doi.org/10.1021/ac071519h

    Article  CAS  Google Scholar 

  62. G. Dutta, S. Siddqui, H. Zeng, J.A. Carlisle, P.U. Arumugam, The effect of electrode size and surface heterogeneity on electrochemical properties of ultrananocrystalline diamond microelectrode. J. Electroanal. Chem. 756, 61–68 (2015). https://doi.org/10.1016/j.jelechem.2015.08.016

    Article  CAS  Google Scholar 

  63. J. Park, J.J. Galligan, G.D. Fink, G.M. Swain, In vitro continuous amperometry with a diamond microelectrode coupled with video microscopy for simultaneously monitoring endogenous norepinephrine and its effect on the contractile response of a rat mesenteric artery. Anal. Chem. 78(19), 6756–6764 (2006). https://doi.org/10.1021/ac060440u

    Article  CAS  Google Scholar 

  64. Y.S. Singh, L.E. Sawarynski, H.M. Michael, R.E. Ferrell, M.A. Murphey-Corb, G.M. Swain, B.A. Patel, A.M. Andrews, Boron-doped diamond microelectrodes reveal reduced serotonin uptake rates in lymphocytes from adult rhesus monkeys carrying the short allele of the 5-HTTLPR. ACS Chem. Neurosci. 1(1), 49–64 (2010). https://doi.org/10.1021/cn900012y

    Article  CAS  Google Scholar 

  65. Y. Ishii, T.A. Ivandini, K. Murata, Y. Einaga, Development of electrolyte-free ozone sensors using boron-doped diamond electrodes. Anal. Chem. 85(9), 4284–4288 (2013). https://doi.org/10.1021/ac400043b

    Article  CAS  Google Scholar 

  66. T. Ochiai, Y. Ishii, S. Tago, M. Hara, T. Sato, K. Hirota, K. Nakata, T. Murakami, Y. Einaga, A. Fujishima, Application of boron-doped diamond microelectrodes for dental treatment with pinpoint ozone-water production. ChemPhysChem 14(10), 2094–2096 (2013). https://doi.org/10.1002/cphc.201200845

    Article  CAS  Google Scholar 

  67. K. Yoshimi, Y. Naya, N. Mitani, T. Kato, M. Inoue, S. Natori, T. Takahashi, A. Weitemier, N. Nishikawa, T. McHugh, Y. Einaga, S. Kitazawa, Phasic reward responses in the monkey striatum as detected by voltammetry with diamond microelectrodes. Neurosci. Res. 71(1), 49–62 (2011). https://doi.org/10.1016/j.neures.2011.05.013

    Article  Google Scholar 

  68. E.L. Silva, A.C. Bastos, M.A. Neto, R.F. Silva, M.L. Zheludkevich, M.G.S. Ferreira, F.J. Oliveira, Boron doped nanocrystalline diamond microelectrodes for the detection of Zn2+ and dissolved O2. Electrochim. Acta 76, 487–494 (2012). https://doi.org/10.1016/j.electacta.2012.05.074

    Article  CAS  Google Scholar 

  69. S.F. Peteu, B.W. Whitman, J.J. Galligan, G.M. Swain, Electrochemical detection of peroxynitrite using hemin–PEDOT functionalized boron-doped diamond microelectrode. Analyst 141, 1796–1806 (2016). https://doi.org/10.1039/C5AN02587G

    Article  CAS  Google Scholar 

  70. K. Asai, T.A. Ivandini, Y. Einaga, Continuous and selective measurement of oxytocin and vasopressin using boron-doped diamond electrodes. Sci. Rep. 6, 32429 (2016). https://doi.org/10.1038/srep32429

    Article  CAS  Google Scholar 

  71. D. Khamis, E. Mahe, F. Dardoize, D. Devilliers, Peroxodisulfate generation on boron-doped diamond microelectrodes array and detection by scanning electrochemical microscopy. J. Appl. Electrochem. 40(10), 1829–1838 (2010). https://doi.org/10.1007/s10800-010-0114-x

    Article  CAS  Google Scholar 

  72. E. Popa, H. Notsu, T. Miwa, D.A. Tryk, A. Fujishima, Selective electrochemical detection of dopamine in the presence of ascorbic acid at anodized diamond thin film electrodes. Electrochem. Solid-State Lett. 2(1), 49–51 (1999). https://doi.org/10.1149/1.1390730

    Article  CAS  Google Scholar 

  73. A. Fujishima, T.N. Rao, E. Popa, B.V. Sarada, I. Yagi, D.A. Tryk, Electroanalysis of dopamine and NADH at conductive diamond electrodes. J. Electroanal. Chem. 473(1–2), 179–185 (1999). https://doi.org/10.1016/S0022-0728(99)00106-0

    Article  CAS  Google Scholar 

  74. D. Sopchak, B. Miller, R. Kalish, Y. Avyigal, X. Shi, Dopamine and ascorbate analysis at hydrodynamic electrodes of boron doped diamond and nitrogen incorporated tetrahedral amorphous carbon. Electroanalysis 14(7–8), 473–478 (2002). https://doi.org/10.1002/1521-4109(200204)

    Article  CAS  Google Scholar 

  75. W.C. Poh, K.P. Loh, W.D. Zhang, S. Triparthy, J.-S. Ye, F.-S. Sheu, Biosensing properties of diamond and carbon nanotubes. Langmuir 20(13), 5484–5492 (2004). https://doi.org/10.1021/la0490947

    Article  CAS  Google Scholar 

  76. P.S. Siew, K.P. Loh, W.C. Poh, H. Zhang, Biosensing properties of nanocrystalline diamond film grown on polycrystalline diamond electrodes. Diam. Relat. Mater. 14(3–7), 426–431 (2005). https://doi.org/10.1016/j.diamond.2004.11.016

    Article  CAS  Google Scholar 

  77. G.-H. Zhao, M.-F. Li, M.-L. Li, Differential pulse voltammetric determination of dopamine with the coexistence of ascorbic acid on boron-doped diamond surface. Cent. Eur. J. Chem. 5(4), 1114–1123 (2007). https://doi.org/10.2478/s11532-007-0049-1

    Article  CAS  Google Scholar 

  78. A. Suzuki, T.A. Ivandini, K. Yoshimi, A. Fujishima, G. Oyama, T. Nakazato, N. attori, S. Kitazawa, Y. Einaga, Fabrication, characterization, and application of boron-doped diamond microelectrodes for in vivo dopamine detection. Anal. Chem. 79(22), 8608–8615 (2007). https://doi.org/10.1021/ac071519h

  79. M. Wei, G. Terashima, M. Lv, A. Fijishima, Z.-Z. Gu, Boron-doped diamond nanograss array for electrochemical sensors. Chem. Commun. 45(24), 3624–3629 (2009). https://doi.org/10.1039/b903284c

    Article  CAS  Google Scholar 

  80. G.W. Muna, V. Quaiserová-Mocko, G.M. Swain, Chlorinated phenol analysis using off-line solid-phase extraction and capillary electrophoresis coupled with amperometric detection and a boron-doped diamond microelectrode. Anal. Chem. 77(20), 6542–6548 (2005). https://doi.org/10.1021/ac050473u

    Article  CAS  Google Scholar 

  81. L.A. Hutton, M. Vidotti, J.G. Iacobini, C. Kelly, M.E. Newton, P.R. Unwin, J.V. Macpherson, Fabrication and characterization of an all-diamond tubular flow microelectrode for electroanalysis. Anal. Chem. 83(14), 5804–5808 (2011). https://doi.org/10.1021/ac2010247

    Article  CAS  Google Scholar 

  82. R. Oyobiki, T. Kato, M. Katayama, A. Sugitani, T. Watanabe, Y. Einaga, Y. Matsumoto, K. Horisawa, N. Doi, Toward high-throughput screening of NAD(P)-dependent oxidoreductases using boron-doped diamond microelectrodes and microfluidic devices. Anal. Chem. 86(19), 9570–9575 (2014). https://doi.org/10.1021/ac501907x

    Article  CAS  Google Scholar 

  83. E.L. Silva, C.P. Gouvêa, M.C. Quevedo, M.A. Neto, B.S. Archanjo, A.J.S. Fernandes, C.A. Achete, R.F. Silva, M.L. Zheludkevich, F.J. Oliveira, All-diamond microelectrodes as solid state probes for localized electrochemical sensing. Anal. Chem. 87(13), 6487–6492 (2015). https://doi.org/10.1021/acs.analchem.5b00756

    Article  CAS  Google Scholar 

  84. A. Avdic, A. Lugstein, M. Wu, B. Gollas, I. Pobelov, T. Wandlowski, K. Leonhardt, G. Denuault, E. Bertagnolli, Fabrication of cone-shaped boron doped diamond and gold nanoelectrodes for AFM–SECM. Nanotechnology 22, 145306 (2011). https://doi.org/10.1088/0957-4484/22/14/145306

    Article  CAS  Google Scholar 

  85. W. Smirnov, A. Kriele, R. Hoffmann, E. Sillero, J. Hees, O.A. Williams, N. Yang, C. Kranz, C.E. Nebel, Diamond-modified AFM probes: from diamond nanowires to atomic force microscopy-integrated boron-doped diamond electrodes. Anal. Chem. 83(12), 4936–4941 (2011). https://doi.org/10.1021/ac200659e

    Article  CAS  Google Scholar 

  86. A. Eifert, W. Smirnov, S. Frittmann, C. Nebel, B. Mizaikoff, C. Kranz, Atomic force microscopy probes with integrated boron doped diamond electrodes: fabrication and application. Electrochem. Commun. 25, 30–34 (2012). https://doi.org/10.1016/j.elecom.2012.09.011

    Article  CAS  Google Scholar 

  87. A.E. Hess, D.M. Sabens, H.B. Martin, C.A. Zorman, Diamond-on-polymer microelectrode arrays fabricated using a chemical release transfer process. J. Microelectromechanical Syst. 20(4), 867–875 (2011). https://doi.org/10.1109/JMEMS.2011.2159099

    Article  CAS  Google Scholar 

  88. Z. Gao, V. Carabelli, E. Carbone, E. Colombo, M. Dipalo, C. Manfredotti, A. Pasquarelli, A. Feneberg, K. Thonke, E. Vittone, Transparent microelectrode array in diamond technology. J. Micro-Nano Mechatronics 6(1–2), 33–37 (2011). https://doi.org/10.1007/s12213-010-0032-3

    Article  Google Scholar 

  89. R. Kiran, L. Rousseau, G. Lissorgues, E. Scorsone, A. Bongrain, B. Yvert, S. Picaud, P. Mailley, P. Bergonzo, Multichannel boron doped nanocrystalline diamond ultramicroelectrode arrays: design, fabrication and characterization. Sensors 12(6), 7669–7681 (2012). https://doi.org/10.3390/s120607669

    Article  CAS  Google Scholar 

  90. W. Smirnov, J.J. Hees, D. Brink, W. Muller-Sebert, A. Kriele, O.A. Williams, C.E. Nebel, Anisotropic etching of diamond by molten Ni particles. Appl. Phys. Lett. 97(7), 073117 (2010). https://doi.org/10.1063/1.3480602

    Article  CAS  Google Scholar 

  91. C.A. Rusinek, M.F. Becker, R. Rechenberg, T. Schuelke, Fabrication and characterization of boron doped diamond microelectrode arrays of varied geometry. Electrochem. Commun. 73, 10–14 (2016). https://doi.org/10.1016/j.elecom.2016.10.006

    Article  CAS  Google Scholar 

  92. V. Carabelli, A. Marcantoni, F. Picollo, A. Battiato, E. Bernardi, A. Pasquarelli, P. Olivero, E. Carbone, Planar diamond-based multiarrays to monitor neurotransmitter release and action potential firing: new perspectives in cellular neuroscience. ACS Chem. Neurosci. 8(2), 252–264 (2017). https://doi.org/10.1021/acschemneuro.6b00328

    Article  CAS  Google Scholar 

  93. S. Siddiqui, Z. Dai, C.J. Stavis, H. Zeng, N. Moldovan, R.J. Hamers, J.A. Carlisle, P.U. Arumugam, A quantitative study of detection mechanism of a label-free impedance biosensor using ultrananocrystalline diamond microelectrode array. Biosensor. Bioelectron. 15, 284–290 (2012). https://doi.org/10.1016/j.bios.2012.03.001

    Article  CAS  Google Scholar 

  94. M.E. Sandison, J.M. Cooper, Nanofabrication of electrode arrays by electron-beam and nanoimprint lithographies. Lab Chip 6(8), 1020–1025 (2006). https://doi.org/10.1039/B516598A

    Article  CAS  Google Scholar 

  95. Y.H. Lanyon, D.W.M. Arrigan, Recessed nanoband electrodes fabricated by focused ion beam milling. Sens. Actuators B 121(1), 341–347 (2007). https://doi.org/10.1016/j.snb.2006.11.029

    Article  CAS  Google Scholar 

  96. Y.H. Lanyon, G. De Marzi, Y.E. Watson, A.J. Quinn, J.P. Gleeson, G. Redmond, D.W.M. Arrigan, Fabrication of nanopore array electrodes by focused ion beam milling. Anal. Chem. 79(8), 3048–3055 (2007). https://doi.org/10.1021/ac061878x

    Article  CAS  Google Scholar 

  97. H. Li, N. Wu, A large-area nanoscale gold hemisphere pattern as a nanoelectrode array. Nanotechnology 19(27), 275301 (2008). https://doi.org/10.1088/0957-4484/19/27/275301

    Article  CAS  Google Scholar 

  98. R.M. Penner, C.R. Martin, Preparation and electrochemical characterization of ultramicroelectrodes ensembles. Anal. Chem. 59(21), 2625–2630 (1987). https://doi.org/10.1021/ac00148a020

    Article  CAS  Google Scholar 

  99. V.P. Menon, C.R. Martin, Fabrication and evaluation of nanoelectrode ensembles. Anal. Chem. 67(13), 1920–1925 (1995). https://doi.org/10.1021/ac00109a003

    Article  CAS  Google Scholar 

  100. M. Yang, F. Qu, Y. Lu, Y. He, G. Shen, R. Yu, Platinum nanowire nanoelectrode array for the fabrication of biosensors. Biomaterials 27(35), 5944–5950 (2006). https://doi.org/10.1016/j.biomaterials.2006.08.014

    Article  CAS  Google Scholar 

  101. T. Lohmuller, U. Muller, S. Breisch, W. Nisch, R. Rudorf, W. Schuhmann, S. Neugebauer, M. Kaczor, S. Linke, S. Lechner, J. Spatz, M. Stelzle, Nano-porous electrode systems by colloidal lithography for sensitive electrochemical detection: fabrication technology and properties. J. Micromechanics Microengineering 18(11), 115011 (2008). https://doi.org/10.1088/0960-1317/18/11/115011

    Article  CAS  Google Scholar 

  102. E. Jeoung, T.H. Galow, J. Schotter, M. Bal, A. Ursache, M.T. Tuominen, C.M. Stafford, T.P. Russell, V.M. Rotello, Fabrication and characterization of nanoelectrode arrays formed via block copolymer self-assembly. Langmuir 17(21), 6396–6398 (2001). https://doi.org/10.1021/la010531g

    Article  CAS  Google Scholar 

  103. C. Wang, X. Shao, Q. Liu, Y. Mao, G. Yang, H. Xue, X. Hu, One step fabrication and characterization of platinum nanopore electrode ensembles formed via amphiphilic block copolymer self-assembly. Electrochim. Acta 52(2), 704–709 (2006). https://doi.org/10.1016/j.electacta.2006.06.003

    Article  CAS  Google Scholar 

  104. C. Wang, Q. Liu, X. Shao, G. Yang, H. Xue, X. Hu, One step fabrication of nanoelectrodes ensembles formed via amphiphilic block copolymers self-assembly and selective voltammetric detection of uric acid in the presence of high ascorbic acid content. Talanta 71(1), 178–185 (2007). https://doi.org/10.1016/j.talanta.2006.03.055

    Article  CAS  Google Scholar 

  105. J. Li, J.E. Koehne, A.M. Cassell, H. Chen, H.T. Ng, Q. Ye, W. Fan, J. Han, M. Meyyappan, Inlaid Multi-Walled Carbon Nanotube Nanoelectrode Arrays for Electroanalysis, vol. 17 (Wiley-VCH, Weinheim, 2005), pp. 15–27. https://doi.org/10.1002/elan.200403114

  106. J. Koehne, J. Li, A.M. Cassell, H. Chen, Q. Ye, H.T. Ng, J. Han, M. Meyyappan, The fabrication and electrochemical characterization of carbon nanotube nanoelectrode arrays. J. Mater. Chem. 14(4), 676–684 (2004). https://doi.org/10.1039/B311728F

    Article  CAS  Google Scholar 

  107. Y. Tu, Y. Lin, W. Yantasee, Z. Ren, Carbon Nanotubes Based Nanoelectrode Arrays: Fabrication, Evaluation, and Application in Voltammetric Analysis, Electroanalysis, vol. 17 (Wiley-VCH, Weinheim, 2005), pp. 79–84. https://doi.org/10.1002/elan.200403122

  108. S. Siddiqui, P.U. Arumugam, H. Chen, J. Li, M. Meyyappan, Characterization of carbon nanofiber electrode arrays using electrochemical impedance spectroscopy: effect of scaling down electrode size. ACS Nano. 4(2), 955–961 (2010). https://doi.org/10.1021/nn901583u

    Article  CAS  Google Scholar 

  109. N. Yang, W. Waldemar, C.E. Nebel, Fabrication, properties and electrochemical applications of diamond nanostructures. MRS Proc. 1511, mrsf12-1511-ee07-01 (2013). https://doi.org/10.1557/opl.2012.1661

  110. D. Luo, L. Wu, J. Zhi, Fabrication of boron-doped diamond nanorod forest electrodes and their application in nonenzymatic amperometric glucose biosensing. ACS Nano. 3(8), 2121–2128 (2009). https://doi.org/10.1021/nn9003154

    Article  CAS  Google Scholar 

  111. M. Lv, M. wei, F. Rong, C. Terashima, A. Fujishima, Z.-Z. Gu, Electrochemical detection of catechol based on as-grown and nanograss array boron-doped diamond electrodes. Electroanalysis 22(2), 199–203 (2010). https://doi.org/10.1002/elan.200900296

  112. W. Wu, L. Bai, X. Lin, Z. Tang, Z. Gu, Nanograss array boron-doped diamond electrode for enhanced electron transfer from Shewanella loihica PV-4. Electrochem. Commun. 13(8), 872–874 (2011). https://doi.org/10.1016/j.elecom.2011.05.025

    Article  CAS  Google Scholar 

  113. D. Luo, J. Zhi, Fabrication and electrochemical behaviour of vertically aligned boron-doped diamond nanorod forest electrodes. Electrochem. Commun. 11(6), 1093–1096 (2009). https://doi.org/10.1016/j.elecom.2009.03.011

    Article  CAS  Google Scholar 

  114. Y. Yang, J.-W. Oh, Y.-R. Kim, C. Terashima, A. Fujishima, J.S. Kim, H. Kim, Enhanced electrogenerated chemiluminescence of a ruthenium tris(2,2′)bipyridyl/tripropylamine system on a boron-doped diamond nanograss array. Chem. Commun. 46(31), 5793–5795 (2010). https://doi.org/10.1039/c0cc00773k

    Article  CAS  Google Scholar 

  115. M.C. Granger, G.M. Swain, The influence of surface interactions on the reversibility of ferri/ferrocyanide at boron-doped diamond thin-film electrodes. J. Electrochem. Soc. 146(12), 4551–4558 (1999). https://doi.org/10.1149/1.1392673

    Article  CAS  Google Scholar 

  116. W. Gajewski, P. Achatz, O.A. Williams, K. Haenen, E. Bustarret, M. Stutzmann, J.A. Garrido, Electronic and optical properties of boron-doped nanocrystalline diamond films. Phys. Rev. B 79(4), 045206 (2009). https://doi.org/10.1103/PhysRevB.79.045206

    Article  CAS  Google Scholar 

  117. O.A. Williams, O. Douheret, M. Daenen, K. Haenen, E. Osawa, M. Takahashi, Enhanced diamond nucleation on monodispersed nanocrystalline diamond. Chem. Phys. Lett. 445(4–6), 255–258 (2007). https://doi.org/10.1016/j.cplett.2007.07.091

    Article  CAS  Google Scholar 

  118. M. Sentic, F. Virgilio, A. Zanut, D. Manojlovic, S. Arbault, M. Tormen, N. Sojic, P. Ugo, Microscopic imaging and tuning of electrogenerated chemiluminescence with boron-doped diamond nanoelectrode arrays. Anal. Bioanal. Chem. 408(25), 7085–7094 (2016). https://doi.org/10.1007/s00216-016-9504-1

    Article  CAS  Google Scholar 

  119. J. Guo, E. Lindner, Cyclic voltammograms at coplanar and shallow recessed microdisk electrode arrays: guidelines for design and experiment. Anal. Chem. 81(1), 130–138 (2009). https://doi.org/10.1021/ac801592j

    Article  CAS  Google Scholar 

  120. M. Fleischmann, S. Pons, J. Daschbach, The ac impedance of spherical, cylindrical, disk, and ring microelectrodes. J. Electroanal. Chem. 317(1–2), 1–26 (1991). https://doi.org/10.1016/0022-0728(91)85001-6

    Article  CAS  Google Scholar 

  121. M. Fleischmann, S. Pons, The behavior of microdisk and microring electrodes. Mass transport to the disk in the unsteady state: the ac response. J. Electroanal. Chem. 250(2), 277–283 (1988). https://doi.org/10.1016/0022-0728(88)85169-6

  122. L.M. Abrantes, M. Fleischmann, L.M. Peter, S. Pons, B.R. Scharifker, On the diffusional impedance of microdisc electrodes. J. Electroanal. Chem. 256(1), 229–233 (1988). https://doi.org/10.1016/0022-0728(88)85023-X

    Article  CAS  Google Scholar 

  123. O. Koster, W. Schuhmann, H. Vogt, W. Mokwa, Quality control of ultra-microelectrode arrays using cyclic voltammetry, electrochemical impedance spectroscopy and scanning electrochemical microscopy. Sens. Actuators B 76(1–3), 573–581 (2001). https://doi.org/10.1016/S0925-4005(01)00637-2

    Article  CAS  Google Scholar 

  124. J. Hees, R. Hoffmann, N. Yang, C.E. Nebel, Diamond nanoelectrode arrays for the detection of surface sensitive adsorption. Chem. Eur. J. 19(34), 11287–11292 (2013). https://doi.org/10.1002/chem.201301763

    Article  CAS  Google Scholar 

  125. C. Dincer, E. Laubender, J. Hees, C.E. Nebel, G. Urban, J. Heinze, SECM detection of single boron doped diamond nanodes and nanoelectrode arrays using phase-operated shear force technique. Electrochem. Commun. 24, 123–127 (2012). https://doi.org/10.1016/j.elecom.2012.08.005

    Article  CAS  Google Scholar 

  126. C. Dincer, R. Ktaich, E. Laubender, J.J. Hees, J. Kieninger, C.E. Nebel, J. Heinze, G.A. Urban, Nanocrystalline boron-doped diamond nanoelectrode arrays for ultrasensitive dopamine detection. Electrochim. Acta 185, 101–106 (2015). doi:https://doi.org/10.1016/j.electacta.2015.10.113

  127. C. Kranz, Diamond as advanced material for scanning probe microscopy tips. Electroanalysis 28, 35–45 (2016). https://doi.org/10.1002/elan.201500630

    Article  CAS  Google Scholar 

  128. R. Kaneko, S. Oguchi, Ion-implanted diamond tip for a scanning tunneling microscope. Jpn. J. Appl. Phys. 29, 1854–1855 (1990)

    Article  CAS  Google Scholar 

  129. E.P. Visser, J.W. Gerritsen, W.J.P. van Enckevort, H. van Kempen, Tip for scanning tunneling microscopy made of monocrystalline, semiconducting, chemical vapor deposited diamond. Appl. Phys. Lett. 60, 3232–3234 (1992). https://doi.org/10.1063/1.106703

    Article  Google Scholar 

  130. Z. Chang, Z. Ma, J. Shen, X. Chu, C. Zhu, J. Wang, S. Pang, Z. Xue, Diamond tips and nanometer-scale mechanical polishing. Appl. Surf. Sci. 70–71, 407–412 (1993). https://doi.org/10.1016/0169-4332(93)90466-O

    Article  Google Scholar 

  131. S. Albin, J. Zheng, J.B. Cooper, W. Fu, A.C. Lavarias, Microwave plasma chemical vapor deposited diamond tips for scanning tunneling microscopy. Appl. Phys. Lett. 71, 2848–2850 (1997). https://doi.org/10.1063/1.120152

    Article  CAS  Google Scholar 

  132. O. Lysenko, N. Novikov, A. Gontar, V. Grushko, A. Shcherbakov, Combined scanning nanoindentation and tunneling microscope technique by means of semiconductive diamond berkovich tip. J. Phys.: Conf. Ser. 61, 740–744 (2007). https://doi.org/10.1088/1742-6596/61/1/148

  133. O. Lysenko, N. Novikov, V. Grushko, A. Shcherbakov, A. Katrusha, S. Ivakhnenko, V. Tkach, A. Gontar, Fabrication and characterization of single crystal semiconductive diamond tip for combined scanning tunneling microscopy. Dia. Relat. Mater. 17, 1316–1319 (2008). https://doi.org/10.1016/j.diamond.2008.02.013

    Article  CAS  Google Scholar 

  134. A.P. Chepugov, A.N. Chaika, V.I. Grushko, E.I. Mitskevich, O.G. Lysenko, Boron-doped diamond single crystals for probes of the high-vacuum tunneling microscopy. J. Superhard Mater. 3, 151–157 (2013). https://doi.org/10.3103/S1063457613030040

    Article  Google Scholar 

  135. V. Grushko, O. Libben, A.N. Chaika, N. Novikov, E. Mitskevich, A. Chepugov, O. Lysenko, B.E. Murphy, S.A. Krasnikov, I.V. Shvets, Atomically resolved STM imaging with a diamond tip: simulation and experiment. Nanotechnology 25, 025706 (2014). https://doi.org/10.1088/0957-4484/25/2/025706

    Article  CAS  Google Scholar 

  136. A. Fujishima, Y. Einaga, T.N. Rao, D.A. Tryk, Diamond Electrochemistry (Elsevier Academic Press, Tokyo, 2005)

    Google Scholar 

  137. C.E. Nebel, J. Ristein, Thin Film Diamond II: Semiconductors and Semimetals, vol. 77 (Elsevier Academic Press, New York, 2004)

    Google Scholar 

  138. E. Brillas, C.A. Martinez-Huitle, Synthetic Diamond Films: Preparation, Electrochemistry, Characterization, and Applications (Wiley, New Jersey, 2011)

    Book  Google Scholar 

Download references

Acknowledgements

The author thanks the financial support from German Research Foundation (DFG) under the project (grant no. YA344/1-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nianjun Yang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yang, N. (2019). Diamond Electrochemical Devices. In: Yang, N. (eds) Novel Aspects of Diamond. Topics in Applied Physics, vol 121. Springer, Cham. https://doi.org/10.1007/978-3-030-12469-4_8

Download citation

Publish with us

Policies and ethics